Seemay Chou, Kira E. Poskanzer, and Peter S. Thuy-Boun
SC
TD
BF
WH
KP
+6
Published: May 31, 2022
If you’re interested in generating proteomics data but your organism of interest doesn’t have a sequenced genome to use as a reference database, it is straightforward and useful to collect a transcriptome instead.
Seemay Chou, Kira E. Poskanzer, MaryClare Rollins, and Peter S. Thuy-Boun
SC
TD
BF
KP
TR
+2
Published: Mar 30, 2023
We generated a whole-genome assembly for the lone star tick to serve as a reference for downstream efforts where whole-genome maps are required. We created our assembly using pooled DNA from salivary glands of 50 adult female ticks that we sequenced using PacBio HiFi reads.
Adair L. Borges, Feridun Mert Celebi, Kira E. Poskanzer, and Taylor Reiter
RD
KP
TR
Published: Aug 25, 2023
We implemented a lightweight method to identify viruses in 342 human brain bulk and single-cell sequencing data sets, and identified two glioblastoma cells from a single patient that contained deltapolyomavirus sequences.
Prachee Avasthi, Feridun Mert Celebi, Elizabeth A. McDaniel, Kira E. Poskanzer, Michael E. Reitman, and Emily C.P. Weiss
SC
RD
+5
Published: Dec 20, 2023
Some human proteins are encoded by genes with repetitive sequences, which, if they expand, damage the nervous system and cause disorders like Huntington’s disease. We found animals with similar proteins that have more repeats than we’ve ever seen in healthy people.
Adair L. Borges, Seemay Chou, Ilya Kolb, Ryan Lane, David G. Mets, and Kira E. Poskanzer
KC
SC
IK
+4
Published: Jul 26, 2024
Sensory disorders are clinically common, debilitating conditions. But mouse behavioral models are often insufficient. We demonstrate that label-free, minimally-invasive brain imaging in mice could be a promising avenue for sensory research or drug discovery efforts.
Brae M. Bigge, Adair L. Borges, Seemay Chou, Elizabeth A. McDaniel, Kira E. Poskanzer, and Ryan York
BB
SC
RD
+5
Published: Aug 09, 2024
Inspired by wasps co-opting viral capsids to deliver genes to the caterpillars they parasitize, we looked for capsid-like proteins in other species. We found capsid homologs in ticks and other parasites, suggesting this phenomenon could be wider spread than previously known.