Even with many tools available, categorizing species is tough. We used data from Raman spectroscopy, a form of label-free imaging, to infer phylogenetic patterns among several dozen diverse microbial taxa, offering a non-destructive and rapid way to dissect species relationships.
Feridun Mert Celebi, Seemay Chou, Erin McGeever, Austin H. Patton, and Ryan York
SC
+4
Published: Sep 29, 2023
We want to find and use evolutionary innovations to solve present-day problems. We developed NovelTree, an efficient phylogenomic workflow that will empower us to decode the evolutionary traces of these innovations across the tree of life.
Prachee Avasthi, Brae M. Bigge, Ilya Kolb, David G. Mets, Manon Morin, Austin H. Patton, and Ryan York
BB
IK
DM
+5
Published: Mar 06, 2024
We outline a comparative approach to investigate protein function by correlating the presence or absence of a protein with species-level phenotypes. We applied this strategy to a novel actin isoform in fungi but didn’t find an association with any of the phenotypes we considered.
Prachee Avasthi, Megan L. Hochstrasser, Jasmine Neal, Austin H. Patton, and Ryan York
RY
Published: Mar 05, 2024
We’re seeking feedback on NovelTree, our modular phylogenomic workflow. We’d appreciate your insights into how we can improve gene family inference, incorporate protein structure predictions, and expand to whole-genome data as input.
Prachee Avasthi, Brae M. Bigge, Ben Braverman, Tara Essock-Burns, Ryan Lane, David G. Mets, Austin H. Patton, and Ryan York
BB
TE
+7
Published: May 31, 2024
To test its utility in analyzing biological samples, we built an open-source Raman spectrometer and collected spectra from chilis, beer, and algae. We could stratify samples, classify replicates, and link spectra with quantitative traits of beer (ABV) and chilis (perceived heat).