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Mapping the spectrum of
archaeal protein
sequence–structure
relationships

We analyzed 4,064 Asgard protein families, seeking generalizable

rules governing sequence–structure relationships. We found a

subset of protein families with structural conservation despite

phylogenetic and sequence diversity, but no global constraints

across the proteome.

Contributors (A-Z)

Audrey Bell, Keith Cheveralls, Stephen A. Goldstein, Ryan York

Version 1 ·  Aug 15, 2025

Purpose
We recently compiled an extensive database of Asgard archaea proteomes [1]. Asgard

archaea are a recently described and extremely diverse kingdom representing 2 billion

years of evolutionary diversity. Novel protein sequences, structures, and functions

likely exist among this taxon.

To begin exploring this, we computationally characterized the archaeal sequence–

structure relationships landscape. This diverse landscape contains a continuum of
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We’ve put this effort on ice! �

#StrategicMisalignment

Though we determined that a subset of families might have valuable information

on sequence–structure relationships, we’ve decided it’s currently out of scope

for us to pursue it.

Background and goals
Asgard archaea represent one of biology's most evolutionarily significant yet

underexplored lineages. As the closest relatives of eukaryotes [3][4][5], their

proteomes share much of the complex cellular machinery found among eukaryotes,

but have evolved in parallel for approximately 2 billion years. Despite their relationship

with eukaryotes, Asgard archaea were first described in 2015. Accordingly,

characterizations of archaeal proteome diversity are still nascent. The phylogenetic

breadth and long evolutionary history of Asgard archaea make them an untapped

resource for identifying novel aspects of protein structure and function.

relationships; most protein families show a weak-to-moderate correlation between

sequence and structure diversity. While the classical framework [2] predicts a tight

coupling between sequence and structural divergence, our findings reinforce that this

is only one of many possible patterns. Embracing the continuum of archaeal

sequence–structure relationships should facilitate more nuanced approaches to

protein modelling and engineering.

All associated code and some data are available in this GitHub repository.

Larger data files, including all-vs-all TM-align comparisons and per-column

Shannon entropy values, are on Zenodo.

Learn more about the Icebox and the different reasons we ice projects.

https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/tree/v3.0
https://zenodo.org/records/16712749
https://research.arcadiascience.com/icebox/


We aimed to begin mapping the sequence–structure landscape across Asgard protein

families, documenting the patterns that emerge from this underexplored evolutionary

context. We wanted to understand how protein families within this lineage have

navigated the fundamental challenges of protein evolution: maintaining essential

structural features while allowing sequence adaptation across vast evolutionary

distances.

The patterns we discovered highlight the remarkable richness of evolutionary

strategies within Asgard proteomes, but they also complicate simplistic models of

protein diversification. Rather than finding uniform relationships between sequence

and structural change, we observed a continuum. Some protein families exhibit near-

perfect structural conservation despite significant sequence divergence, while in

others, sequence and structure have diversified together. These findings challenge

entrenched assumptions about how protein structure evolves, and show that protein

diversification models must account for fundamentally different evolutionary strategies

rather than assuming universal patterns.

The approach
We analyzed a previously compiled dataset of Asgard archaeal and giant virus protein

families [1]. The dataset contains > 730,000 Asgard archaea proteins, which we

organized into families using Orthofinder (v3.0; RRID: SCR_017118) [6]. We filtered the

dataset to include families with ≥ 20 proteins associated with entries in the AlphaFold

database (AFDB). After filtering, 4,064 orthogroups comprising 678,072 unique

proteins remained.

Multiple sequence alignment and phylogenetic

inference

Each orthogroup’s sequences were aligned using MAFFT (run_initial_mafft_parallel.py)

(v7.526; RRID: SCR_011811) [7] and filtered to retain only sequences at least 70% the

median length (filter_mafft_alignments_by_length.py). Alignments were re-aligned and

trimmed using the —gappyout  option from TrimAl (refine_alignments.py). We used a

highly parallelized version of FastTree 2 [8] called VeryFastTree (v4.0.5; RRID:

https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/run_initial_mafft_parallel.py
https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/filter_mafft_alignments_by_length.py
https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/refine_alignments.py


SCR_023594) [9] to infer approximate maximum-likelihood phylogenies for each

orthogroup (run_fasttree_parallel.py).

Sequence diversity analysis

We used a custom script (calculate_sequence_diversity.py) to calculate the average

pairwise sequence identity (APSI), per-column Shannon entropy, and normalized Hill

diversity (using phylogenetic trees) for each orthogroup. This script generated all of the

intra-orthogroup sequence diversity metrics for subsequent analyses.

Structural diversity calculation

To calculate structural diversity, we collected any high-quality (pLDDT > 70) AFDB

structures for each orthogroup and used TM-align to do all-vs-all structural alignments

(calculate_all_vs_all_metrics.py). We used the mean Chain2 TM-score for each

orthogroup and its standard deviation for analysis.

Sequence–structure analysis

We conducted all subsequent analyses and figure generation in the Jupyter Notebook

“sequence_structure_notebook.ipynb.” We defined “Structurally Rigid” and

“Structurally Plastic” families as having mean TM-scores in the top or bottom quantile

among all families, respectively.

To categorize protein families by their sequence–structure relationships, we classified

orthologous groups into profiles based on their structural diversity metrics, as follows:

        # --- 1. Define Thresholds using Quantiles (25th and

        mean_tm_low_thresh = df_master['Mean_TMscore'].quant

        mean_tm_high_thresh = df_master['Mean_TMscore'].quan

        

        stddev_tm_low_thresh = df_master['StdDev_TMscore'].q

        stddev_tm_high_thresh = df_master['StdDev_TMscore'].

https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/run_fasttree_parallel.py
https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/calculate_sequence_diversity.py
https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/blob/v3.0/scripts/calculate_all_vs_all_metrics.py


        # --- 2. Create Binned Level Columns ---

        conditions_mean = [df_master['Mean_TMscore'] < mean_

        choices_mean = ["Low_Mean_TM", "High_Mean_TM"]

        df_master['Mean_TM_Level'] = np.select(conditions_me

        conditions_std = [df_master['StdDev_TMscore'] < stdd

        choices_std = ["Low_StdDev_TM", "High_StdDev_TM"]

        df_master['StdDev_TM_Level'] = np.select(conditions_

        

        # --- 3. Create Descriptive Structural Profile ---

        def assign_structural_profile(row):

            if row['Mean_TM_Level'] == 'High_Mean_TM' and ro

                return 'Structurally Rigid'

            elif row['StdDev_TM_Level'] == 'High_StdDev_TM':

                return 'Structurally Plastic'

We integrated functional annotations using InterPro domain architectures and

calculated intrinsic disorder predictions to understand what sequence features

correlate with different structural profiles. Finally, we performed per-column

conservation analysis across multiple sequence alignments to identify patterns of

sequence conservation within structurally rigid versus plastic families.

Statistical analysis

To determine if the distributions of mean per-column Shannon entropy, APSI, mean

intrinsic disorder, and mean domain complexity differed between structural profiles,

we applied the two-sample Kolmogorov–Smirnov test. We calculated Cohen's d to

quantify the effect size of any observed differences. For non-parametric comparisons

of median TM-scores, we used a Mann–Whitney U test and a one-sample t-test to

measure whether the median TM-scores of orthogroups were significantly deviated

from a null expectation. We then calculated Cohen's d to quantify the effect size of any

observed differences.



Visualization

We used arcadia-pycolor (v0.6.3) [10] to generate figures before manual adjustment.

AI tool usage

We used Claude to suggest wording ideas and then choose which small phrases or

sentence structure ideas to use. We also used Gemini (2.5 Pro) to help write code,

clean up code, and to provide iterative feedback on our research plan as we were

considering how to approach this project. For example, running the all-vs-all structural

diversity comparison was too heavy for a local machine. Gemini 2.5 Pro proposed

specifications and parameters for running it on an AWS EC2 instance, which we

implemented. It was also Gemini 2.5 Pro’s idea to represent distributions as kernel

density estimates. We used Google Jules to assist with code review and repo

organization. We also used Claude to review our code and selectively incorporated its

feedback.

The results

Access all related code and some data in this GitHub repository (DOI:

10.5281/zenodo.16883699).

Access larger data files, including all-vs-all TM-align comparisons and per-

column Shannon entropy values, on Zenodo (DOI: 10.5281/zenodo.16712749).

https://github.com/Arcadia-Science/2025-asgard-ncldv-OG-diversity/tree/v3.0
https://doi.org/10.5281/zenodo.16883699
https://zenodo.org/records/16712749
https://doi.org/10.5281/zenodo.16712749


The archaeal sequence–structural landscape

contains distinctly rigid and plastic protein

families

We previously classified ~730,000 Asgard archaea proteins into families (protein

families descended from a common ancestor with similar functions, called “protein

families” from here on) [1]. In that work, we observed that protein family sequence

diversity existed on a continuum and displayed a variety of relationships between

phylogenetic diversity, sequence variation, and amino acid features [1]. We wanted to

build on that work by incorporating protein structural predictions to resolve the

sequence–structure landscape further. We identified 678,072 unique proteins with

structural predictions. These proteins were associated with 4,064 protein families. We

first wondered if we could locate exceptionally “rigid” (structurally conserved) or

“plastic” (structurally variable) populations of protein families. We hypothesized that

this stratification would enhance our ability to identify outliers in subsequent analyses,

allowing us to identify features or motifs linked to unexpected structural conservation

or plasticity.

We classified 454 protein families as structurally rigid (the upper quartile of median

TM-score and the lowest quartile of TM-score standard deviation) and 652 as

structurally plastic (the highest quartile of TM-score standard deviation). To determine

whether the structural profiles of these groups were statistically distinct from the

dataset overall, we calculated density distributions of the median pairwise TM-scores

of the rigid and plastic families, in addition to the complete dataset (Figure 1, A). TM-

scores of the rigid families differed significantly from the overall distribution (rigid

median TM-score = 0.94, dataset median TM-score = 0.81; p = 5.2e−171; Mann–

Whitney U test) as did the plastic families (plastic median TM-score = 0.71; p =

4.9e−29; Mann–Whitney U test), indicating that these populations are statistically

separable from the general continuum.

Does sequence diversity mirror these patterns of structural variation? To address this,

we calculated the average pairwise sequence identity (APSI) for all families (37%) as

well as the plastic (35%) and rigid families (47%) (Figure 1, B). Again, rigid and plastic

families significantly differed from the entire dataset (p = 1.04e−70 and p = 3.4e−56;

Kolmogorov-Smirnov test), suggesting that sequence variation also separates these

populations.



This raised the question of whether structurally rigid families are simply a function of

greater overall sequence conservation, rather than any notable protein features. To

test this, we calculated the average median TM-score of families within APSI buckets

(e.g., 35–40%, 45–50%). We compared those to the median TM-score of the

structurally rigid and structurally plastic families (Figure 1, C). The structurally rigid

families and structurally plastic families had median TM-scores that deviated

significantly from expectation (p = 6.67e−183 and 2.75e−41; one-sample t-tests), but

the effect size (Cohen’s d) for the structurally rigid families was about four times

greater (2.296 vs. −0.566). These results support the hypothesis that there are distinct,

identifiable, outlier protein families concerning their structural properties. In this case,

the structurally rigid families exhibit disproportionately high conservation given their

sequence divergence. Conversely, structurally plastic families are significantly less

conserved than expected. This demonstrates that these two categories represent

statistically identifiable populations that may provide insight into novel patterns of

sequence–structure diversification.



Structurally rigid families exhibit higher than expected structural

conservation.

(A) Kernel density plots of median TM-scores reveal that structurally rigid

families have near-maximal structural conservation (median TM-score = 0.94)

and a narrow distribution.

(B) Density distributions of APSI values reveal that while rigid families generally

have higher sequence identity, there's substantial overlap between categories.

(C) Curve of the average median TM-score at a given APSI across the dataset.

Blue and red stars indicated the structurally rigid and plastic families,

respectively.

Figure 1



Structurally rigid protein families are

phylogenetically diverse

Does the evolutionary history of protein families predict structural rigidity? For

example, recently evolved families may be more rigid than older ones with more time

to diversify. To explore this, we estimated the evolutionary diversity of each protein

family using a normalized version of Hill’s diversity. There was no correlation between

Hill’s diversity and structural diversity (Figure 2, A), and the density distribution of the

structurally rigid families, though shifted slightly to the right, wasn't significantly

different relative to either all families or the structurally plastic ones (Figure 2, B). This

result points to an intriguing feature of the structurally rigid families, in that their broad

representation across the Asgard phylogeny suggests they're old protein families with

tightly conserved folds and, presumably, critical functions. We also analyzed the mean-

per-column Shannon entropy, a metric describing the amino acid variability at every

ungapped position in the alignments. This metric was weakly correlated with structural

diversity (Pearson's r = 0.28) (Figure 2, C), but its density distribution shows the

structurally rigid families as outliers (p = 3e−67, Cohen’s d = −1.17; Kolmogorov-

Smirnov test) (Figure 2, D). The structurally plastic families also differed significantly

from the dataset overall (p = 1e−8). Still, the effect size was relatively small (Cohen’s d

= 0.25), suggesting these families are less of an outlier than the structurally rigid ones.

These patterns reveal that structural rigidity isn't simply a consequence of recent

evolutionary origin or limited phylogenetic sampling. The structurally rigid protein

families are ancient and broadly distributed across Asgard archaea and have

maintained their folds for 2 billion years, despite extensive sequence divergence.



Multiple diversity metrics confirm structural category distinctions.

(A) Structural diversity versus normalized Hill Diversity shows minimal correlation

(r = −0.06) but clear separation between structural profiles.

(B) Normalized Hill Diversity density distributions differ markedly between rigid

and plastic families.

(C) Structural diversity versus per-column Shannon entropy reveals moderate

correlation (r = 0.28).

(D) Shannon entropy distributions highlight conservation differences, with rigid

families showing distinct patterns.

Figure 2



Domain architecture, but not intrinsic

disorder, distinguishes structurally rigid

families.

(A) Domain count distributions show structurally

rigid families are biased toward simpler

architectures (mean = 1.95 domains) compared

to plastic families (mean = 2.59 domains).

(B) Intrinsic disorder distributions are remarkably

similar between categories, suggesting disorder

content doesn't predict structural rigidity.

Rigid and plastic protein families don’t differ in

domain number or intrinsic disorder

Finally, we explored

whether more complex

domain architectures or

intrinsic disorder are linked

to structural conservation.

Structurally rigid families

have a significantly lower

mean number of domains

per protein (1.95) than

structurally plastic ones

(2.59) (p = 5.8e−12;

Kolmogorov-Smirnov test),

but with a modest effect

size (Cohen’s d = −0.43)

(Figure 3, A). Intrinsic

disorder also doesn’t

meaningfully distinguish

the structurally rigid

families from others in the

dataset (Figure 3, B),

suggesting that the

determinants of structural

conservation are more

likely to be specific

architectural or sequence

features, not broad

properties like disorder or

the number of domains.

Figure 3



Key takeaways
Our analysis of 4,064 Asgard protein families reveals that while most families at least

loosely follow predictable sequence–structure relationships, there's a statistically

identifiable population of structurally conserved families with broad sequence

divergence. In some cases, this small subset displays sequence–structure decoupling,

maintaining fold even when sequence identity drops below 35%. Among Asgard

archaea, at least, extensive sequence variation doesn't necessarily destabilize protein

folds, and some sequence-diverse protein families exhibit near-perfect structural

conservation despite being ancient and broadly distributed across the phylogeny. This

variation highlights that various sequences can encode standard structural features,

suggesting that some form of constraint (e.g., biophysical or evolutionary) has

continually acted on these families to generate structural conservation.

More systematic approaches may elucidate the nature of these constraints. In this

case, domain number and intrinsic disorder didn’t have clear explanatory power,

suggesting that more nuanced patterns of local variation are likely at play. Given this,

and the broad continuum of patterns observed here, we decided that identifying the

molecular mechanisms of this conservation was outside this project's scope. These

results suggest that, while statistically distinct populations of the protein universe can

be identified, one-size-fits-all models will continually fail to capture the breadth of

observed sequence–structure relationships.

Next steps
While this analysis has successfully identified protein families with unexpected

sequence–structure relationships, we’ve decided to leave our current efforts here. A

proper follow-up may involve generating models that integrate structural, evolutionary,

and sequence information to flexibly capture the diversity of patterns present in the

archaeal protein universe.

For the broader research community, several directions could yield significant insights.

Comparing the patterns identified here with those present in other taxa could help

identify archaeal-specific novelties. Developing computational tools to identify

structurally rigid families from sequence alone would accelerate the discovery of

robust protein scaffolds for engineering applications. Finally, the protein families we've



identified represent a unique resource for understanding protein evolution — they're

natural experiments in maintaining function while exploring vast expanses of

sequence space.
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