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Raman spectra reflect
complex phylogenetic
relationships

Even with many tools available, categorizing species is tough. We

used data from Raman spectroscopy, a form of label-free imaging, to

infer phylogenetic patterns among several dozen diverse microbial

taxa, offering a non-destructive and rapid way to dissect species

relationships.
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Purpose

Figuring out the relationships between organisms is an essential part of biological

investigation. To do so, researchers often rely on methods that are destructive (e.g.

DNA sequencing), require extensive tools (e.g. label-based imaging), or prior

knowledge (e.g. expert classification).

In this pub, we show that we can use Raman spectroscopy — a form of non-

destructive, label-free imaging — to infer complex phylogenetic relationships between

microbial organisms. Specifically, we find that distinct portions of Raman spectra
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Background and goals
Many roadblocks in biological research boil down to a single problem: not knowing

what you’re looking at. Meaningful comparisons — be it microbes within a mixed

community or the cells of a heterogeneous tissue — are hard when samples are

morphologically indistinct, difficult to access, or exist in dense arrangements. To get

around this, biologists often employ next-generation sequencing (NGS) or label-based

imaging. However, these methods come with drawbacks. NGS-enabled phylogenetic

analyses can require significant time investment, are prone to various types of

systematic errors, and can be difficult to use when samples are mixed or composed of

hard-to-sort and/or uncharacterized organisms [1]. On the other hand, label-based

imaging can be destructive and is often limited to well-known molecules or species

that require prior characterization or evidence for use (which is often lacking in

evolutionary or ecological research) [2][3].

Label-free imaging methods using vibrational spectroscopy, such as Raman imaging,

offer promising alternatives for addressing a number of basic problems in biology [3]

[4]. Raman methods detect the presence of various chemical bonds via light

scattering, providing biochemical fingerprints that can be reflective of metabolism,

physiological state, cell type, or species [3]. Accordingly, it has been proposed that

reflect phylogenetic signal and that this relationship is reflective of genomic

components.

These observations should be of interest to evolutionary biologists, ecologists, and,

broadly, researchers interested in extending the capacities of label-free imaging

methods.

This pub is part of the platform effort, “Genetics: Decoding evolutionary drivers

across biology.” Visit the narrative for more background and context.

All associated code is available in this GitHub repository.

A full walkthrough of the code base for the framework appears in a companion

notebook.
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Raman methods could become important tools for identifying the provenance of living

organisms [5][6][7][8] and have already been leveraged to detect taxonomic patterns

in certain biological materials, such as bivalve shells [9] and animal fossilization

products [10]. Similarly, increasing numbers of studies have shown that Raman

spectra are amenable to species-specific classification using machine learning

approaches [3][6][7]. However, to our knowledge, no studies have explicitly tested the

utility of Raman spectra for identifying phylogenetic patterns or relationships between

species.

Establishing this link, or lack thereof, will be a crucial step if these tools are to be

broadly applied to evolutionary and ecological problems. With this in mind, we used a

publicly available dataset of Raman spectra from 30 clinically isolated microbial strains

[7], exploring the extent to which we could uncover phylogenetic relationships solely

from spectral data.

The approach

Detailed methods

Data

All data analyzed here were previously published and publicly available. Details and

experimental conditions can be found in the original publication, which used deep

learning to classify 30 clinically isolated strains of pathogenic bacteria and fungi [7].

Briefly, they obtained Raman spectra using a Horiba LabRAM HR Evolution Raman

microscope targeting monolayers of dried samples. They obtained spectra between

381.98 and 1792.4 cm  and normalized by the maximum intensity to vary between 0

and 1.
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Analysis

All associated code is available in this GitHub repository (DOI:

10.5281/zenodo.7872093) and we provide a code base walkthrough for the

framework in a companion notebook.

The suite of analyses presented here is available in a fully interactive and editable

notebook on GitHub. This notebook walks through the relevant code and

methodological considerations. Below is a brief, complementary methods overview:

We obtained data from the original publication via the Dropbox link provided on their

GitHub [7]. Depending on the analysis type, we used all replicates per strain (n = 100)

or strain-level means (see subsequent paragraphs). We excluded the species

Streptococcus agalactiae from all analyses based on what appeared to be an aberrant

spectral profile (see Figure 1).

First, we collected taxonomic classifications for each strain from the NCBI taxonomy

database [11]. Strain-specific classifications were compiled into a matrix in which each

column corresponds to a specific level of the taxonomic hierarchy (e.g. strain, species,

genus, etc.). We then used this matrix as input to generalized linear models (GLMs)

predicting spectral relationships among strains. We used PC1 from a principal

component analysis (PCA) of spectra across all replicates (n = 100/strain) as the

outcome variable given that it explained over 20% of variance in the data (explored in

more depth in Notebook 1). In total, we constructed eight GLMs, each for a specific

level of taxonomic classification. We compared model fits using the Bayesian

information criterion (BIC). We complemented these analyses by measuring the cosine

similarity among replicates within different taxonomic groupings. We measured cosine

similarity using the cosine  function in the R package LSA and calculated its variance

among taxonomic groupings.

To enable phylogenetic comparisons, we obtained a time-calibrated, species-level (n

= 19 species) phylogenetic tree from timetree.org [12]. We then used this tree to

calculate phylogenetic signal as a function of spectral position. To do so, we used a

sliding window approach (width = 25 wavenumbers, stepsize = 1 wavenumber). Within

each window, we inferred phylogenetic signal of species-level mean spectra by

calculating Pagel’s λ [13] using the phylosig  function from the R package phylosig

[14]. We calculated the spectral distance between species using these same sliding
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windows, but, in place of Pagel’s lambda, we calculated the euclidean distance

between species within each window. We then time-calibrated spectral distances by

calculating the cophenetic distances between all species (essentially the dates at

which species are estimated to have diverged given the phylogenetic tree) using the

function cophenetic.phylo  in the R package ape [15]. We then matched species-

wise cophenetic distances with spectral distances, allowing two-dimensional

comparisons of these values. We used the window-based approach to calculate the

difference between window-based trees and the observed phylogenetic tree via the

Robinson-Foulds metric. We used the function TreeDistance  in the R package

TreeDist to infer the Robinson-Foulds metric [16].

Finally, we compared genome features to the patterns observed above by collecting

data from the NCBI Genome Database (Figure 1, C). We inferred the relationship

between genomic features and spectra using the window-based approach from

above. Within each window, we performed PCA on mean spectra and generated a GLM

using PC1 as the outcome and each genomic feature (e.g. GC content) as the predictor.

The outcome of this analysis was thus a continuous value representing the similarity

between spectral and genomic relationships. We then computed Pearson correlations

between these GLM fits and computed phylogenetic signal.

The results

Strain-level Raman spectra associate with

taxonomy

As mentioned in “The approach,” we obtained a publicly available dataset of Raman

spectra collected from 30 clinically isolated strains of bacteria and fungi (Figure 1). To

enable evolutionary comparisons, we identified the taxonomic classification for each

sample, from strain to domain (Figure 2, A). We reasoned that if spectra contain

meaningful phylogenetic information, then the similarity of strain-level spectra should

scale with taxonomy (i.e. genus-level spectra should be more similar than kingdom-

level spectra).



Phylogenetic context of the dataset.

(A) Time-calibrated phylogeny of species considered in this study.

Species names are colored by genus. The number of strains per

species in the data set is indicated by the number in the grey box.

* = species not included in statistical analyses.

(B) Spectra distributions for each species in the study. Mean spectra

are indicated by the darker line, plotted over the spectra of all 100

replicated per species. AU = arbitrary units.

(C) Heatmap of genome statistics for each species.

Figure 1



To test this intuition, we analyzed how well taxonomic categories can predict spectral

measurements (see The approach). Specifically, we used generalized linear models

(GLMs) to assess the linear relationships between taxonomy and spectra and

assessed model fit using the Bayesian information criterion (BIC), a common metric for

comparing a set of models. Here, models with lower BIC are better able to predict

spectra. Strikingly, we found that the range of BIC values exactly mirrored the

taxonomic hierarchy (Figure 2, A–B). Strain identity best predicted the range of spectra

(BIC = 9,034), followed by species (BIC = 10,974) (Figure 2, A). Interestingly, all other

taxonomic predictors — genus to kingdom — displayed similar model fits. We also saw

these patterns when analyzing spectral similarity (measured by cosine similarity)

(Figure 2, C), observing increasing amounts of variance as taxonomic granularity

decreased. These observations suggest that Raman spectra vary as a function of

taxonomic relationship and that strain and species-level signals are most strongly

encoded in spectral information.

Raman spectra vary with taxonomy.

(A) Graphical depiction of the hierarchical relationships between

taxonomic classes used here.

(B) Distribution of the Bayesian information criterion (BIC) values for

generalized linear models (GLMs) comparing spectra and

taxonomic categories.

(C) Distribution of cosine similarity variance as a function of

taxonomic categories.

Figure 2



Evolutionary signals are position-specific

within spectra

The above observations indicate that, when considered in their totality, Raman spectra

vary as a function of taxonomy. Is this variation evenly distributed across spectra or

restricted to specific portions? If the former is true, then it would appear that variations

between species’ spectra arise from biochemical signatures too complex or nonlinear

to resolve solely from these data. In the latter scenario, specific molecular signatures

may drive spectral differences, hinting at some possibility of identifying biological

drivers of this measurement variation (via position-specific associations with

taxonomy).

We explored these possibilities by calculating phylogenetic signal (Pagel’s λ) [13] — a

measure of how much species’ phenotypic and phylogenetic relationships match each

other — as a function of position in Raman spectra (for details see The approach). In

this framework, higher values of phylogenetic signal indicate that closer-related

species have more similar spectral measurements. Remarkably, we found increased

phylogenetic signal in a series of clear bands (Figure 3, A–C). These bands were

distributed across the spectral range (Figure 3, A), displayed an average width of 43

wavenumbers (standard deviation = 18 wavenumbers), and had maximum

phylogenetic signal values between 0.25 and 0.79. These observations support the

second scenario from above: Phylogenetic signal is unevenly distributed across

Raman spectra.

Given that the amount of phylogenetic signal varied across the observed bands, we

next wondered if this variation reflected the same, or different, evolutionary patterns.

There were several possibilities. On one hand, relationships between species

measurements could be identical across the spectrum. In this scenario, phylogenetic

signal would vary simply as a function of measurement differences going up and down.

On the other hand, it could be the case that species relationships change with

position, either subtly or strongly. In that case, phylogenetic signal may be associated

with a variety of species relationships, suggesting that Raman spectra reflect a more

complex landscape of evolutionary relationships.



Evolutionary signals are position-specific within spectra.

(A) The phylogenetic signal distribution across the full Raman

spectrum. Calculated in 25 wavenumber-wide windows. The yellow

and purple dots mark example peaks discussed in the text.

(B) Heatmap of spectral distance. The y-axis corresponds to billion

years, darker color corresponds to greater average distance

between species pairs as a function of divergence time. Black line

represents the time point at which the maximum spectral distance

for that position was measured.

(C) Distribution of distances between the phylogenetic tree and

trees made from spectral relationships within windows along the

spectrum. Tree distance corresponds to the Robinson-Foulds

metric. Colored bands below reflect common biomolecular

signatures in Raman spectra.

Figure 3



To explore these possibilities, we calculated the spectral distance between species as

a function of evolutionary time (for details see The approach) and visualized the results

as a heatmap (Figure 3, B). Color shows the distance among spectra as a function of

evolutionary time (represented by the y-axis). We are essentially asking, for two

species that diverged X million years ago, how different are their spectra? We then

average these values over all of evolutionary time. We also plotted the time at which we

saw the greatest spectral difference for each position along the spectrum, displayed

as a black line. As may be expected, spectral distance within the bands was often

elevated further back in time (reflecting phylogenetic structure; more distantly related

species have more distant spectra) while regions with low phylogenetic signal

displayed more recent spectral differences (Figure 3, B). However, despite these high-

level patterns, we found a notable amount of diversity among the bands, both in the

overall distance between spectra and specific relationships with time (Figure 3, B).

Certain bands reflected large overall distances between species (Figure 3, A and C;

marked by purple dot) while others, though displaying increased phylogenetic signal,

displayed spectral distance distributions more similar to that observed across the full

spectrum (Figure 3, A and C; marked by yellow dot). Similarly, the conserved bands

displayed variable relationships with the overall phylogenetic tree (Robinson-Foulds

metric; Figure 3, C) wherein certain bands displayed strong similarities to the

phylogeny (purple dot) while others did not (yellow dot). These findings suggest that the

phylogenetic relationships of conserved bands are position-specific and reflect a

complex evolutionary landscape.

This last observation is even more enticing when we consider the broader scale

molecular patterns present in Raman spectra (as represented by the colored boxes on

the bottom of Figure 3, A–C). For example, the band between ~700–800 cm

overlapped strongly with a region known to reflect nucleic acid abundance while

another at ~1,150–1,250 cm  appeared to correlate with lipids [8]. Interestingly, these

two bands displayed quite different spectral and phylogenetic tree distance

distributions (Figure 3, A–C). Might it be possible to detect evolutionary relationships

unique to certain biomolecules from Raman spectral data?
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Genomic features predict spectral variation

across species

Finally, we compared high-level genomic features (e.g. genome size, number of genes,

GC content; Figure 1, C) with spectral relationships. To do so, we calculated the

association between a given genomic statistic and per-species spectral

measurements within overlapping windows along the spectrum (width = 25

wavenumbers; see The approach and Notebook 1).

Association between genome features and phylogeny.

(A) Comparison of phylogenetic signal (green) and ribosomal RNA

numbers along the spectrum. r = Pearson’s correlation.

(B) Barplot of correlation coefficients (calculated with Pearson’s

correlation) between phylogenetic signal and ribosomal RNA

number. GC content is highlighted in pink.

We found that several genomic features, such as the # of ribosomal RNAs (rRNAs),

displayed clear peaks that mirrored those we observed for phylogenetic signal (Figure

4, A). All of these comparisons yielded moderate to strong correlations (Figure 4, B),

the strongest being between rRNA # and phylogenetic signal (r = 0.66), followed

closely by genome size (r = 0.65). Additionally, we found that a linear model using all

genomic features could account for 76% of phylogenetic signal variation (R  = 0.76; for

more details, see Notebook 1). These results suggest that basic genomic features can

account for a substantial portion of phylogenetic information present in Raman

spectra.

Figure 4
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Key takeaways
Raman spectra from clinically isolated bacteria and fungi vary as a function of

taxonomic classification (Figure 2).

Phylogenetic relationships are unevenly distributed across the Raman spectrum;

specific spectral bands predict known phylogenetic relationships (Figure 3).

Evolutionary diversification patterns vary as a function of Raman position (Figure 3).

Phylogenetic signal in the Raman spectrum is strongly associated with high-level

genomic features, suggesting that Raman methods directly detect biochemical

information relevant to inferring phylogenetic relationships (Figure 4).

Implications
The set of analyses presented here support the idea that Raman spectral comparisons

will be broadly useful for phylogenetic and evolutionary studies.

However, the conclusions from this study come with several caveats. First, these data

are restricted to clinically isolated strains of bacteria and fungi. Future work is needed

to assess how applicable these findings are to other taxa (including multicellular

organisms). Furthermore, the Raman data we analyzed here came from researchers

measuring pooled samples [7]. This strategy may limit the true dynamic range of

species-level spectra, especially if the goal is to consider variation across individual

organisms, since this strategy essentially averages out signals across individuals.

Finally, the phylogenetic distances represented here are quite broad. It will be

enlightening to test the outer limits of Raman capabilities in taxonomic classification,

including but not limited to testing closely related species, measuring individual

organisms, assessing the effect of optical variants (e.g. autofluorescence), or exploring

variation in complex samples and tissues. These caveats also present many

opportunities for substantial exploration and development. For example, it may be the

case that we can uncover variable evolutionary patterns across spatially complex

samples (e.g. between cells or in subcellular regions of interest).

Finally, it is interesting to consider Raman as just one example of a certain type of

high-content phenotype that is useful in dissecting complex biological processes.

Raman spectra contain abundant information about the molecular structure and, as



we show here, phylogenetic context/evolutionary diversification patterns of biological

samples. Even within a single Raman experiment, we should be able to extract insight

into multiple dimensions of biology. Other types of biological measurements that

quantify complex biophysical/chemical/molecular processes, such as chlorophyll

fluorescence [17] or lifetime imaging, may also fit into this category. In general, we

contend that these observations point toward the power of combining high-

dimensional phenotypes with evolutionary inference to begin dissecting complex

biology in a generalizable, scalable, and hypothesis-free framework.
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