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Predicting peptides from
tick salivary glands that
suppress host detection

We predicted tick salivary gland peptides that may help the tick

evade host detection while feeding. Using phylogenetics and peptide

prediction, we identified 12 candidates. However, testing the trait in

the lab proved challenging, so we aren’t continuing the project.
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Purpose
In this pub, we predict peptides from tick salivary glands that may inhibit the host's

ability to detect parasitic activity and try to test for this activity in vitro. When ticks bite

their hosts, the host often doesn’t feel it. This is partly because ticks secrete

molecules in their saliva that can interfere with sensory perceptions such as itch, pain,

and inflammation. We refer to these systems as “host detection.” We’re interested in

understanding how long-feeding ticks suppress host detection to uncover new

therapeutic strategies for skin conditions. Motivated by our previous studies on

chelicerate proteins that suppress host detection, we have extended our focus to

peptides, given their inherent drug-like properties.
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We used a computational framework to predict peptides that contribute to the tick's

ability to feed on hosts undetected for long periods of time. We used phylogenetic

trait-mapping data to find proteins statistically linked with suppression of host

detection and then checked for the presence of signal peptides to select those likely

secreted into tick saliva. We then refined our selection by considering additional

factors such as expression in tick salivary gland transcriptomes, ease of synthesis,

solubility, and similarity to other peptides (which helped us span the diversity of

peptide sequences). This multi-tiered filtering process pinpointed the most viable

candidates for experimental testing.

We identified 12 peptides that we think are likely to suppress host detection and have

properties that make them easier to work with in experimental settings. We were

initially excited to test these peptides for their ability to modulate host immunity by

looking at mast cell degranulation, since mast cells are one of the first immune cells

encountered by ticks [1]. However, common mast cell degranulation assays were

unreliable in our hands, leading us to ice this line of research [2]. Given that putative

trait host detection suppression is so broad, we have been unsure how to follow up in

the lab. We’re sharing our results in case others are interested in our approach or

further testing these predictions.

All data and code to predict peptides from proteins associated with suppression of

host detection are available in this GitHub repository.

All associated data and code to predict peptides from tick salivary gland

transcriptomes are available in this GitHub repository.

https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/tree/v1.0
https://github.com/Arcadia-Science/2024-tick-sg-peptides-tsa/tree/v1.0


We’ve put this effort on ice! �

#TechnicalGap

We identified tick peptides predicted to suppress host detection, but we're

unsure how to follow up with these peptides experimentally. We don’t have

predictions about what the targets of these peptides might be, and the mast cell

degranulation assay we set up to test these molecules was unreliable. We’ve

decided to ice this project, and would need to have much stronger functional

predictions for these peptides to thaw it.

Background and goals
Ticks have adapted to consume host blood without detection. In particular, female

hard-bodied ticks have lengthy "blood meals" spanning over a week. Through

specialized molecules in their saliva, these ticks not only facilitate the extraction of

blood but also manipulate host sensory perceptions like pain and itch and immune

responses like inflammation to evade host detection [3][4]. We define "host detection"

as the systems employed by the host to rapidly identify and react to parasites or other

sources of danger. By interfering with these systems, ticks remain unnoticed and

continue their feeding undisturbed. Some of these molecules involved in host

detection suppression could have therapeutic benefits for humans, especially in

managing itchiness, pain, and inflammation in the skin [5].

While tick saliva is a cocktail of pharmacologically active molecules, we were

interested in whether ticks use peptides to suppress host detection. Peptides are a

diverse class of small protein sequences. The exact definition of a peptide varies, but

for this pub we’ll use short chains of 2–100 amino acids that are genomically encoded

or ribosomally synthesized and cleaved from a precursor protein [6][7][8][9][10][11].

We were drawn to peptides as a class because of their appealing therapeutic

properties. Peptide drugs typically have a low toxicity and high potency compared to

small molecules. They can also be easier to synthesize than larger biologics. Moreover,
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our interest in peptide discovery dovetails with our focus at Arcadia on proteins and

evolutionary tools.

There's evidence that ticks use salivary peptides to modulate many parts of host

biology [12][13][14][15][16][17][18][19][20], so we set out to identify novel tick peptides

that suppress host inflammation, itch, or pain. After initial computational prediction, we

narrowed the list of candidate peptides based on which are easiest to synthesize and

work with in the lab. In total, we identified 12 peptides for further testing. We followed

up with these peptides in the lab using a mast cell assay, but didn’t gain insights into

the biology of these peptides because of difficulties with the assay itself [2]. We’re

unsure how to follow up with these peptides experimentally, but are sharing our results

in case they're useful to others.

If you’re interested in learning about our methodological details, read on. If you’d like to

see how our pipeline performed, skip to our results.

Access our input tick proteins and peptide data here.

The approach
For a high-level sense of how we performed this work, continue to the “Overview”

section below. To jump straight into all the nuts and bolts of each step, jump to the

“Detailed approach” section.

Overview

Our overarching goal is to discover peptides that suppress host detection by learning

from the evolutionary adaptations of ticks, which have developed mechanisms to feed

on hosts undetected for long meals. Using an evolutionarily-inspired approach, we

recently identified groups of proteins that we believe are associated with suppression

of host detection [21]. The bulk of this pub describes how we predicted peptides from

these proteins and identified which peptides we thought were genuine bioactive

peptides that may suppress host detection and which are feasible to follow up with

experimentally (Figure 1).

https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/tree/v1.0/inputs


An overview of our approach to

identifying candidate tick salivary

gland peptides that suppress host

detection and selecting peptides

for experimental validation.

We predicted peptides from groups

of protein sequences known as

orthogroups (collections of proteins

from multiple species descended

from a single ancestral protein) that

we previously identified as likely to be

Our analysis began with proteins from

chelicerates, a subphylum containing

ticks and other arachnids. We’d

recently used a phylogenetic trait-

mapping approach to identify

“orthogroups” that are statistically

associated with host detection

suppression [21]. An orthogroup, also

known as a gene family, is a set of

proteins from multiple species that all

evolved from a single protein in the

last common ancestor of those

species. To determine these

orthogroups, we first applied our

previously released NovelTree

phylogenomic workflow to 40

chelicerate species with differing

propensities to bite humans, blood

feed, and cause and suppress itch,

inflammation, and pain [21]. NovelTree

infers gene families, gene family trees,

species trees, and gene family

evolutionary history [22]. Using the

NovelTree output, we applied a trait-

mapping approach to select the

orthogroups most strongly associated

with host detection suppression [21].

This analysis produced the proteins

we analyze in this pub. We reasoned

that if any of these proteins encode a

peptide, the peptide might be the

causative host detection-suppressing

molecule.

Our first step in this analysis was to

predict peptides from the proteins in

orthogroups significantly associated

with host detection suppression. To

Figure 1

https://github.com/Arcadia-Science/2024-ticks-on-a-tree
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associated with host detection

suppression. We filtered these

peptides down to a small number of

candidates for experimental follow-

up. The first round of filters used

biological information to increase the

likelihood that a candidate peptide is

a genuine bioactive peptide that

suppresses host detection. The

second round of filters focused on

selecting experimentally feasible

peptides to work with and represent

the sequence diversity of candidate

peptides.

do this, we used our previously

released peptigate pipeline in protein-

only mode [23]. Peptigate is a

workflow that predicts and annotates

three types of bioactive peptides from

transcriptomes or proteins. We

filtered the peptides predicted by

peptigate to those we thought had the

highest chance of being bona fide

peptides present in the saliva using

the filters below.

�. Removed predicted

propeptides: One tool within the

peptigate pipeline predicts

propeptides, a part of a protein

that’s cleaved during maturation or activation but usually has no independent

function once cleaved. We removed these predictions.

�. Removed orthogroups where no peptides had similarity to peptides

expressed in tick salivary glands: We removed peptide predictions where there

was little evidence that the peptide is present in the salivary gland (and therefore

unlikely to be in tick saliva). We expect salivary gland predictions to be incomplete,

so we only required one peptide per orthogroup to match a salivary gland peptide.

�. Kept orthogroups where at least half of the proteins had a predicted

peptide: We wanted to enrich for orthogroups where a peptide was most likely to

be involved in the protein's function. We did this by keeping orthogroups where at

least half of the proteins had a peptide prediction.

�. Kept peptides/parent proteins that contain a signal peptide: In arthropods, a

signal peptide decorates most proteins that are exported to the saliva from the

salivary gland [24][25][26][27][28].

�. Expressed in tick salivary gland transcriptomes: The initial peptide

predictions from our candidate host detection-suppression-associated proteins

[21] came from whole-genome or transcriptome data, so expression could occur

in any tissue. Since host-manipulating peptides are likely produced in the salivary

https://github.com/Arcadia-Science/peptigate/tree/148823239aad41a8f03da37f5499b00c8a79de40
https://github.com/Arcadia-Science/peptigate/tree/148823239aad41a8f03da37f5499b00c8a79de40


gland, we kept peptides similar to those predicted from salivary gland

transcriptomes (see below for how this was determined).

After applying these initial filters, we ended up with peptides in orthogroups where

computational evidence most strongly suggested the potential for suppression of host

detection. We then applied a second set of filters to refine our selection, focusing on

the peptides that seemed most feasible for downstream experimental testing and

best showcased the diversity within the orthogroup. Our target was to narrow down to

10–20 peptides. We used the three filters below.

�. Ease of synthesis: Some peptides are easier to synthesize than others. The two

main factors that impact synthesis are the peptide length (shorter is easier) and

the hydrophilicity of the sequence (more hydrophilic is easier). We selected

peptides that should be easier to synthesize when choosing between similar

candidates.

�. Solubility: For our downstream assays, we needed the peptides to be dissolved in

solution. Therefore, we selected more soluble peptides when choosing between

similar candidates.

�. Similarity to other peptides: When multiple peptides in an orthogroup met the

above criteria, we selected representatives spanning the sequence diversity. We

clustered peptides at 80% identity, and if they fell into the same cluster, we

advanced only one representative for experimental testing.

Detailed approach

Predicting peptides from proteins associated with

suppression of host detection

We used protein sequences associated with the host detection suppression trait, as

determined by previous work [21], as input to peptigate [23] to predict peptides

produced by those proteins. The outputs of the trait mapping are protein sequences in

orthogroups, a score denoting the strength of each cluster’s association with host

detection suppression, and a p-value denoting the statistical likelihood of the

association being observed by chance [21].



To briefly summarize the methodology from that work, we conducted the analysis

using a two-step approach to determine the p-value of these scores. First, we grouped

orthogroups into clusters. We then associated the clusters with the host detection-

suppression trait and only kept clusters from speciation that were significantly

associated. Then, we applied a post-hoc test to determine which orthogroup within

these clusters drove the association. We took this two-step approach to mitigate the

issue of p-value inflation due to multiple testing. Even with this approach, however, no

individual orthogroups were significantly associated with host detection suppression

after correcting for multiple testing. We therefore filtered to orthogroups that had a

positive association with host detection suppression (removed negative scores) and

that had a p-value < 0.05 before multiple testing correction [21].

We used these sequences as input to the protein-only mode of peptigate [23].

Peptigate predicts three types of peptides: cleavage, ribosomally synthesized and

post-translationally modified (RiPP), and small open reading frame (sORF)-encoded.

The protein-only mode predicts cleavage and RiPP peptides but only filters to proteins

that are less than 100 amino acids in length to identify sORF-encoded peptides. For

more information on these types of peptides and how peptigate works, see the

peptigate pub [23].

View the workflow code for our approach to predicting chelicerate peptides

associated with host detection suppression.

Determining whether a peptide contains a signal

peptide

To determine whether a peptide contains a signal peptide, we used annotations from

prior work [21]. This previous project annotated the signal peptides on input proteins

using the tool DeepSig [29]. We look for signal peptides in sORF-encoded peptides

that contain signal peptides themselves, as well as in the precursor proteins for

cleavage peptides, as cleavage peptides aren't likely to contain signal peptides

themselves.

https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/blob/v1.0/analyze-peptigate-outputs.snakefile
https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/blob/v1.0/analyze-peptigate-outputs.snakefile


Identifying peptides expressed in tick salivary

glands

We downloaded tick salivary gland transcriptomes on the NCBI’s Transcriptome

Shotgun Assembly Database (TSA) to identify peptides expressed in tick salivary

glands. We identified 28 transcriptomes from 18 species (Table 1). We also added an

Amblyomma americanum transcriptome that we generated during a recent genome

annotation effort [30]. While this transcriptome derives from salivary glands and other

tick tissues, we recorded the tissue in which each transcript originated. This enabled

us to zero in on just the subset of proteins that originated from salivary glands.

We then ran the peptigate peptide prediction pipeline on each transcriptome [23].

We used DIAMOND blastp  (v2.1.9) to determine the sequence similarity between

peptides predicted from host detection suppression-associated proteins from our

prior work [21] and those from tick salivary gland transcriptomes [31]. We considered

any BLAST hit as a match, in part because filtering short BLAST matches is difficult.

https://github.com/Arcadia-Science/peptigate/tree/148823239aad41a8f03da37f5499b00c8a79de40


Species Transcriptomes Contigs BioProject

Amblyomma

americanum 1 3,139 PRJNA218793

Amblyomma

cajennense
1 5,770 PRJNA241272

Amblyomma

maculatum 1 2,9571 PRJNA703041

Amblyomma

parvum
1 2,838 PRJNA241271

Amblyomma triste 1 8,098 PRJNA241269

Amblyomma

tuberculatum
1 1,812 PRJNA595760

Hyalomma

dromedarii 1 142,391 PRJNA358517

Hyalomma

excavatum
1 5,337 PRJNA311286

Ixodes ricinus 4 51,452

PRJNA177622,

PRJNA217984,

PRJNA312361,

PRJNA589581

Ixodes scapularis 1 5,950 PRJNA905811

Ornithodoros

brasiliensis 2 15,946
PRJNA318033,

PRJNA719007

Ornithodoros

turicata
1 7,560 PRJNA446065

Rhipicephalus

annulatus
2 63,419

PRJNA255770,

PRJNA255770

Rhipicephalus

appendiculatus
3 171,611

PRJNA297811,

PRJNA309182,

PRJNA309182

Rhipicephalus

bursa 3 79,955

PRJNA348674,

PRJNA348674,

PRJNA348674

Rhipicephalus

microplus 1 8,179 PRJNA329522

Rhipicephalus

pulchellus
1 11,227 PRJNA170743



Species Transcriptomes Contigs BioProject

Rhipicephalus

sanguineus 1 11,312 PRJNA606595

Rhipicephalus

zambeziensis
2 25,336

PRJNA381085,

PRJNA905810

Publicly available tick salivary gland transcriptomes.

View the workflow code for our approach to predicting tick salivary gland

peptides from transcriptomes.

Selecting peptides based on ease of synthesis and

solubility

To determine the ease of synthesis and solubility for each peptide sequence, we

uploaded all candidate sequences to the GenScript “Peptide Analyzing Tool” (free to

use but requires that users create an account to access it). Ease of synthesis is

reported categorically as easy, medium, or hard, while solubility is reported

categorically as good or poor.

Selecting representative peptides

To determine whether two peptides have similar sequences, we clustered all predicted

host detection-suppressing peptides using MMseqs2 easy-cluster  (v15.6f452) with

a minimum sequence identity of 80% [32].

All code generated and used for the pub is available in two GitHub repositories.

One predicts peptides from tick transcriptomes (DOI: 10.5281/zenodo.15376399).

The other predicts peptides from chelicerate proteins associated with the host

detection suppression trait (DOI: 10.5281/zenodo.15376401).

Table 1

https://github.com/Arcadia-Science/2024-tick-sg-peptides-tsa/tree/v1.0
https://github.com/Arcadia-Science/2024-tick-sg-peptides-tsa/tree/v1.0
https://www.genscript.com/tools/peptide%2danalyzing%2dtool
https://www.genscript.com/tools/peptide%2danalyzing%2dtool
https://www.genscript.com/tools/peptide%2danalyzing%2dtool
https://github.com/Arcadia-Science/2024-tick-sg-peptides-tsa/tree/v1.0
https://zenodo.org/records/15376399
https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/tree/v1.0
http://doi.org/10.5281/zenodo.15376401


Additional methods

We used ChatGPT and Notion AI to suggest wording ideas and then chose which small

phrases or sentence structure ideas to use. We used Grammarly Business to help

copy-edit draft text to match Arcadia's style.

The results

Access our input tick proteins and peptide data here.

We aimed to predict tick peptides that we could test experimentally. Peptide synthesis

is expensive, and the downstream assays are low-throughput, so we wanted to end up

with 10–20 top peptide predictions for testing.

Narrowing to peptides with the best

computational support for host detection

suppression

We started our peptide selection journey by working with peptides predicted from

3,690 proteins in 87 orthogroups significantly and positively associated with host

detection suppression [21]. We predicted 741 peptides (712 distinct sequences) in 46

orthogroups associated with suppression of host detection. After removing propeptide

predictions and orthogroups where no peptides matched those predicted in salivary

gland transcriptomes, we ended up with 314 peptides (311 distinct sequences) in 16

orthogroups (Table 2).

https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/tree/v1.0/inputs


Orthogroup Proteins

Proteins

with a

predicted

peptide

Predicted

peptides

sORF &

signal

peptide

Cleavage

& signal

peptide

OG0001774 62 45 (0.68) 45 32 4

OG0008102 20 18 (0.75) 18 2 11

OG0000880 93 68 (0.73) 84 0 40

OG0011284 9 1 (0.11) 1 0 0

OG0008888 16 1 (0.06) 1 0 0

OG0002194 56 2 (0.04) 2 0 0

OG0000189 240 21 (0.09) 21 0 0

OG0000746 102 5 (0.05) 5 0 0

OG0000194 237 23 (0.10) 23 0 0

OG0001663 64 6 (0.09) 6 0 0

OG0000385 154 9 (0.06) 9 0 0

OG0000143 281 10 (0.04) 11 0 2

OG0000079 394 55 (0.14) 55 1 0

OG0000305 179 26 (0.15) 26 0 0

OG0015609 5 3 (0.6) 3 0 0

OG0009053 15 4 (0.27) 4 0 0

Candidate groups of proteins and peptides that suppress host detection.

Bold indicates the three orthogroups that met our filtering criteria. “Orthogroup”

refers to gene families generated in our prior host detection suppression trait-

mapping analysis [21]. “Coefficient” is the host detection suppression score from

trait-mapping. “Proteins with a predicted peptide” refers to the number of

proteins with at least one predicted peptide from the peptigate pipeline.

Fractions appear in parentheses next to the numbers to indicate the fraction of

the proteins in the orthogroup that had a peptide prediction. “Predicted

peptides” refers to the total number of peptides predicted by the peptigate

pipeline for that orthogroup. For some proteins, peptigate predicted more than

Table 2



one peptide. “sORF & signal peptide” is the number of predicted sORF peptides

with a predicted signal peptide. “Cleavage & signal peptide” is the number of

predicted cleavage peptides that originated from a precursor protein that had a

predicted signal peptide. “Synthesized” is the number of peptides we

synthesized for experimental validation.

We felt confident that each orthogroup had a high likelihood of suppressing host

detection, given the trait-mapping analysis. However, we were less convinced that the

proteins in all 16 orthogroups encoded peptides. To optimize for orthogroups most

likely to encode peptides, we filtered to orthogroups where we predicted a peptide

from at least half of the proteins (Table 2). This left us with four orthogroups and 150

predicted peptides.

Next, we filtered these predictions to those that contain a signal peptide. Chelicerate

salivary glands use signal peptides to target proteins to the saliva [24]. Tick saliva

contains many of the molecules that ticks use to manipulate host biology [4], so we

wanted to optimize for peptides most likely to be in saliva. The three orthogroups that

passed our majority-peptide-predictions filter also passed this filter (Table 2). Within

these orthogroups, a total of 89 peptides had a predicted peptide sequence as well as

a signal peptide. We selected peptides to synthesize from these 89 sequences.

Selecting peptides for synthesis

We next worked to narrow down the 89 peptides to approximately 10. To do this, we

applied four filters within each orthogroup. First, we looked for peptides in each

orthogroup that were “easy” or “medium” to synthesize according to GenScript’s

“Peptide Analyzing Tool” (this tool is free to use but requires that users create an

account to access it). We also looked for peptides with “good” solubility. These criteria

ensure that the peptide is economical to synthesize and easy to handle in the lab. For

example, peptides with poor solubility might not mix into a saline solution, which is the

vehicle for most injections. Synthesis difficulty and solubility are influenced by factors

such as peptide length, the presence of hydrophobic or charged residues, and

sequence complexity. When no peptides in an orthogroup matched these criteria, we

selected from all peptides (including “difficult” to synthesize and “poor” solubility).

https://www.genscript.com/tools/peptide%2danalyzing%2dtool
https://www.genscript.com/tools/peptide%2danalyzing%2dtool


From this subset of peptides, we then picked peptides that matched peptides

predicted from tick salivary glands. Our earlier trait-mapping effort [21] analyzed whole

genomes or transcriptomes. Selecting peptides similar to those expressed in the

salivary glands increases our likelihood of identifying peptides used in tick saliva to

manipulate the host.

We also examined whether peptides within the orthogroup were similar to each other.

We clustered the peptides at 80% sequence identity and assigned a representative

sequence. When multiple peptides clustered, we selected either the peptide with the

best synthesis and solubility profile or the representative sequence.



Predicted peptide Orthogroup Solubility Synthesi

Rhipicephalus-microplus_XP-

037271377.1_start70_end114
OG0008102 Poor Medium

Amblyomma-

sculptum_GEEX01004552.1.p1
OG0008102 Good Easy

Amblyomma-

americanum_evm.model.contig-245149-

1.2

OG0008102 Good Easy

Dermacentor-andersoni_XP-

054924338.1_start87_end106
OG0008102 Poor Medium

Rhipicephalus-microplus_XP-

037271378.1_start78_end115
OG0008102 Poor Medium

Dermacentor-silvarum_XP-049518196.1 OG0001774 Good Easy

Ixodes-scapularis_tr|B7P452|B7P452-

IXOSC
OG0001774 Good Easy

Ixodes-scapularis_tr|B7Q4Z2|B7Q4Z2-

IXOSC
OG0001774 Good Easy

Hyalomma-

asiaticum_KAH6923445.1_start29_end58
OG0000880 Poor Medium

Rhipicephalus-microplus_XP-

037269427.1_start34_end70
OG0000880 Poor Medium

Dermacentor-silvarum_XP-

037559871.1_start39_end87
OG0000880 Poor Medium

Dermacentor-andersoni_XP-

050051547.1_start39_end77
OG0000880 Poor Medium

Peptide metadata and characteristics we used to select the 12 peptides

flagged for experimental validation.

In addition to the information here, all peptides had signal peptides.

In the “Salivary gland peptide match” column, names correspond to transcript

names in the Transcriptome Shotgun Assembly database with peptide

Table 3



coordinates appended, while “None” indicates that the peptide didn't match

against tick salivary gland peptides.

We identified 12 peptides that best matched our criteria and had diverse sequences

(Table 3). These peptides belong to three orthogroups.

The first group of peptides is predicted from OG0001774. We selected three peptides

from this orthogroup. Two are annotated as the peptides defensin and drosomycin

(Table 3). Defensin and drosomycin are both host defense peptides. Defensin, in

particular, can act as an antimicrobial peptide or participate in immune signaling [33].

We find it encouraging that both sequences were annotated as peptides and are

interested in whether they interact with the immune system.

The second group of peptides is from OG0000880. These sequences are glycine-rich

(Table 3). Glycine-rich peptides have antimicrobial activity across diverse organisms,

from plants to chelicerates [34][35][36][37][38][39]. Since we aren't interested in

antimicrobial activity in our use case, we were excited to learn that some glycine-rich

peptides have other functions in vertebrates [40][41]. The ability of glycine-rich

peptides to elicit cellular and organismal phenotypes is promising for the potential

function of our candidate peptides.

The last group of peptides is from OG0008102 and comprises five sequences. These

peptides are annotated as a mixture of sORF and cleavage peptides. However, the

initial proteins in this group ranged from 99 to 114 amino acids in length. The proteins

that were 100 amino acids or less are sORF peptides, while those that were greater

than 100 amino acids are cleavage peptides. None of the peptides were annotated or

had matches against known peptides in the Peptipedia metadatabase [42]. This

makes it difficult to predict the potential function of these peptides.

Working with putative host detection suppression-associated proteins from NovelTree

[21] was advantageous because the proteins that generated the peptides were already

organized into orthogroups. Although some peptides within an orthogroup shared

sequence homology, many didn't. These orthogroups established connections

between peptides that we couldn't have inferred from their sequences alone.

View the notebook code for our approach to selecting peptides for

experimental validation.

https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/blob/v1.0/notebooks/20240626-03-peptides-into-pools.ipynb
https://github.com/Arcadia-Science/2024-chelicerate-phylogenomics-peptides/blob/v1.0/notebooks/20240626-03-peptides-into-pools.ipynb


Testing peptides experimentally for host

detection suppression traits

Our goal was to identify peptides that suppress host detection. After predicting these

peptides computationally, we next wanted to test for these traits experimentally. In

hindsight, we could have done a better job of thinking through which assays would be

most informative at the outset of the project. We chose to test whether our peptides

could block a form of immune activation involved in host detection [2] using a mast

cell degranulation assay. Mast cells are involved in the skin’s response to

ectoparasites like ticks, and this assay measures β-hexosaminidase release into the

supernatant as a marker of degranulation. While developing the assay, we found that

compound 48/80, a common mast cell activator, caused substantial cell lysis at the

concentrations typically used [2]. This effect raised concerns about the reliability of the

assay. Further, even if the assay had worked well, it would have covered only a small

portion of the broader pain, itch, and inflammation space. For these reasons, the

chance that our peptides would show an effect in this specific context was low. We

didn't find a suitable assay that captures a wider range of host detection pathways, so

we were unable to move forward with experimental testing of our peptide predictions.

Key takeaways
Development of a specific peptide prediction strategy: We developed an

approach to predict peptides that can suppress detection in host organisms during

tick feeding. Our approach first used trait-mapping data and signal peptide

predictions to identify candidate peptides and then used synthesis, solubility,

sequence similarity, and expression profiles in tick salivary glands to select the best

candidates for experimental follow-up.

Selection of peptides for experimental testing: We identified 12 peptides from

three orthogroups to test in downstream experimental assays. Peptides from two

orthogroups have characteristics or annotations similar to known bioactive peptides

from other chelicerates.

Difficulty in experimental follow-up: We attempted to test our predicted peptides

using a mast cell degranulation assay but found the assay unreliable, technically

challenging, and too limited in scope to capture the full range of host detection



traits. Without a better-suited assay, we couldn’t experimentally evaluate the

peptides in vitro.

Next steps
Given our difficulty in experimental follow-up, we’ve decided to put this effort on ice.

We’re hopeful that our peptide prediction approach may be helpful to others or that

someone may be interested in the predicted peptide sequences. We’d also be curious

to hear if anyone has thoughts on a general experimental assay or several very simple

ones that can quickly test for activity across host detection suppression traits like

inflammation, pain, and itch.
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