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Harnessing genotype-
phenotype nonlinearity to
accelerate biological
prediction

It is commonly assumed that phenotypes arise from the cumulative

effects of many independent genes. However, we show that by

accounting for dependent and nonlinear biological relationships, we

can generate models that predict phenotypes with great accuracy.
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Purpose

A core focus of genetics is understanding the relationship between genetic variation

(genotypes) and biological traits (phenotypes). Efforts as diverse as tracing the

evolution of complex phenotypes, identifying disease-causing genes, and

understanding how organisms are built are all contingent on deciphering the mapping

between genotype and phenotype.
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Background and goals
For several centuries now, scientists have attempted to decode how biology emerges

from genetic information. Some of the models that have come out of this assume that

traits are associated with infinitesimally complex genetic bases [1]; others hold that

distinct clusters of few, but highly impactful genes drive each aspect of an organism’s

growth and function [2]. Many (if not most) of these models share a common feature:

no matter their complexity, phenotypes can be understood by simply adding up the

effects of their genetic contributors.

A single human trait best demonstrates this tendency: height. Dozens, if not hundreds,

of genetic studies have been conducted with the goal of mining ever greater amounts

of genetic “gold dust” [2] predicting variation in height [3][4]. Through these efforts,

Our results show that assumptions underlying many current genotype-phenotype

models (namely that genotypes are additive and linear) do not reflect the nonlinearities

present in biology. Non-additive relationships between genes are well known — one

gene can influence the effects of another (epistasis), and some genes have multiple

phenotypic effects (pleiotropy). By accounting for such nonlinear interactions between

genes and phenotypes, we show that we can accurately predict suites of simulated

phenotypes.

These findings should be of interest to anyone whose work relies on accurately

modeling genotype-phenotype relationships, especially those in the fields of

quantitative, population, and human genetics. Additionally, we are excited to get

feedback on how this work might help contribute to these fields and possible

refinements or extensions of its utility.

This pub is part of the platform effort, “Genetics: Decoding evolutionary drivers

across biology.” Visit the platform narrative for more background and context.

All associated code is available in this GitHub repository.

Data from this pub, including empirical and simulated phenotypes, are available

on Zenodo.
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two things have become clear: 1) height is highly heritable (> 80% by a recent study)

[4] but 2) so much of the genome is involved that identifying a discrete molecular basis

seems extremely unlikely.

In response to findings such as these (along with those gleaned from other human

traits), some researchers have begun favoring the use of “polygenic (risk) scores” [5].

By aggregating the effects of many genomic loci, these scores can explain increasing

amounts of trait variation (albeit at the cost of biological interpretability). Similarly, the

“omnigenic model” [6] proposes that small sets of core, trait-determining genes work

in parallel with many other “peripheral” genes. Through their sheer number, these

peripheral loci thus also substantially contribute to trait variation. Importantly, in this

model, contributions of core and peripheral genes are entangled and can’t be

distinguished, ultimately implicating vast swaths of the genome. Both polygenic risk

scores and the omnigenic model assume the same inevitable conclusion: identifying

the molecular drivers of complex traits is exceedingly difficult, if not impossible [7]. But

what if the problem isn’t how we are conceiving of the genetic bases of complex traits;

what if the problem actually has to do with how we are thinking of traits themselves?

Height really is a complex trait, one that involves a myriad of interacting biological

processes (development, metabolism, physiology, and so on). Each process is, in turn,

regulated by its own sets of genes and it is likely that at least some of these gene sets

relate to each other in complicated ways. Indeed, many complex phenotypes result

from a variety of interconnected, nonlinear biological networks and genotypes that can

relate to each other in a variety of directions (e.g., linear, nonlinear) and manners (e.g.,

additive, subtractive, dominant) [8][9].

We believe that these points, if considered seriously, may have substantial implications

for genetics. How often are phenotypes and genotypes nonlinearly correlated relative

to being purely additive? Can information about any one phenotype help to predict

another? Does accounting for phenotypic relationships increase predictive power?

With these questions in mind, we decided to see if an approach explicitly capturing the

complex relationships among phenotypes might provide some useful insights for

genetic analysis writ large. Specifically, we focus on simultaneous analysis of groups of

multiple phenotypes (here referred to as “polyphenotypes”). We examine how levels

of pleiotropy (the impact of single genes on multiple phenotypes) and gene–gene

interaction (the non-linear impact of combinations of genes on phenotypes) structure

polyphenotypes.



Polyphenotype

Any grouping of multiple organismal phenotypes. Here, we argue that

polyphenotypes have multiple uses. On one hand, they can be used to

understand the relationships between multiple phenotypes. At the same time,

they are also useful for developing accurate predictions of any single phenotype

(by allowing one to control for potential false positives/negatives arising from

phenotypic relationships).

The approach
For reasons both causal and correlative, phenotypes co-vary. For example, as

referenced above, height is likely correlated with other phenotypes such as mass or

metabolic rate. In this pub, we quantify the nature and prevalence of phenotype–

phenotype relationships within large groups of phenotypes (what we refer to as

polyphenotypes) to gain insight into the processes that cause these phenotypes. We

find non-linear relationships among phenotypes in natural populations to be

widespread. Furthermore, we find that, in simulations, the degree of non-linear

phenotypes is modulated by the degree of gene–gene interaction and pleiotropy. We

then demonstrate that, where present, phenotype–phenotype relationships can be

leveraged to increase prediction accuracy for individual phenotypes.

Data collection/generation

All the data we used to study empirical variation across sets of phenotypes are publicly

available. Sources and details for these data are available in Table 1. We chose

datasets on the basis of phenotype number, sample size, and population type. We

sought datasets in which a minimum of 15 phenotypes were measured for at least 100

individuals of the same species or interspecies cross. We also generated a set of

random, unrelated phenotypes to compare with the observed phenotypic relationships

contained within these datasets. To do so, for a single “phenotype”, we randomly

generated integer values (values could be any integer between 1 and 1,000) 600 times.

This process thus resulted in 600 simulated “individuals”, each with a randomly

chosen phenotypic value. This was repeated to ultimately generate 30 simulated



phenotypes, each composed of 600 individual observations. After filtering on data

completeness (see below for details on dataset-specific filtering) we imputed missing

values using the mean value for each phenotype and then performed rank

normalization using the R function RankNorm  from the package RNOmni.

Below are descriptions of dataset-specific filtering. We tailored filtering parameters to

each study given variation in sample size and the rate of missing data.

Arabidopsis: We excluded individuals if they had NAs for more than 20 phenotypic

measurements. Similarly, we excluded phenotypes with more than 20 NAs. In addition,

we removed non-continuous phenotypes (at least five unique values required per

phenotype).

Yeast: We removed non-continuous phenotypes (at least five unique values required

per phenotype).

C. elegans: We removed non-continuous phenotypes (at least five unique values

required per phenotype).

Mouse (AIL): We removed non-continuous phenotypes (at least five unique values

required per phenotype).

Mouse (JAX): We excluded samples that were missing more than 100 measurements.

Similarly, we excluded phenotypes missing more than 100 measurements. In addition,

we removed non-continuous phenotypes (at least five unique values required per

phenotype).

Fruit fly: We excluded samples that were missing more than 50 measurements.

Similarly, we excluded phenotypes missing more than 50 measurements. We reduced

the dimensionality of gene expression values from Huang et al. 2015 [10] using PCA

(we extracted the first 30 PCs). In addition, we removed non-continuous phenotypes

(at least five unique values required per phenotype).



Name
Main

reference
Type

N

samples

N

phenos

Arabidopsis [11]
Natural strains

(accessions)
514 110

Yeast [12] F1 segregant 13,950 40

C. elegans [13]
Recombinant inbred

lines (RIL) 2,017 19

Mouse (AIL) [14]
Advanced intercross

line (AIL)
1,063 133

Mouse

(JAX)
[15][16][17] Laboratory strains 106 271

Fruit fly [18] Inbred lines 147 270

Random This pub – 600 30

Datasets we used for empirical analyses of nonlinearity.

All of these data are available on Zenodo.

We simulated 100 phenotypes for 121 populations (N individuals per population = 500).

These populations were created by first simulating genetic data and deriving the

phenotypes from these genotypes. For each individual, we randomly assigned one of

three allelic states at each of 300 loci (e.g., homozygous reference, heterozygous,

homozygous alternate). Then, we generated a genetic architecture for each phenotype

by randomly assigning 100 loci to that phenotype and giving each possible allele at

each locus a weight of influence between zero and 10.

We modeled effects of pleiotropy and gene–gene interaction on phenotypes, varying

the impact of each systematically across populations such that each population had a

unique pairing of the probability pleiotropy and the probability of gene–gene

interactions. These probabilities were per gene–phenotype pair or gene–gene pair and

ranged from 0–1 in increments of 0.1, thus forming an 11 by 11 grid with one simulated

population for each pairing. For example: population 1 has probabilities P(pleiotropy) =

0, P(epistasis) = 0; population 2 has probabilities P(pleiotropy) = 0.1, P(epistasis) = 0;

and so on.

Table 1

https://zenodo.org/record/8298808


To model pleiotropy, for each individual population for each phenotype, we assigned

each locus already determined to influence a phenotype (100 loci per phenotype,

9900 locus-phenotype pairs) to be involved in pleiotropy with a population specific-

probability as defined above. If we determined the locus-phenotype pair to be involved

in pleiotropy, the weights assigned to that locus were included in the calculation of that

phenotype. Similarly, to create gene–gene interactions (e.g., epistasis) that varied

across populations, we assigned each gene–gene pair (N = 4,950) to be involved in an

interaction with a population-specific probability as defined above. If we determined a

locus was involved in an interaction, we randomly assigned that interaction to one of

the six possible pairs of alleles (i.e., interaction among loci here occurs only between

single pairs of alleles). We then multiplied the weights of those alleles. Finally, we

calculated the phenotypes for each individual by summing the weights at loci

influencing that phenotype.

Creating the autoencoder

We implemented a neural network called a denoising autoencoder to test the utility of

examining multiple phenotypes for phenotypic prediction [19]. Autoencoders consist

of two networks — first, an encoder that forces the data through an information

bottleneck, and then a decoder that takes information compressed through that

bottleneck and tries to reconstruct the data. Accurate reconstruction of the data

following the compression through the information bottleneck suggests that the

network has learned a representation of that data. During training, noise is added to

the input data, preventing a common failure mode in which the learned representation

does not extrapolate to data that was not in the training set; the learned model fails to

generalize.

All code associated with this pub — including analysis notebooks, the

synthetic phenotype generator, and the autoencoder model — is available in

this GitHub repository (DOI: 10.5281/zenodo.8371249).

Briefly, our autoencoder consisted of an encoder with two fully connected rectified

linear layers that we subjected to batch normalization and a similarly structured

decoder. The latent space separating the two networks contained 32 nodes. We

conducted the training with phenotypic data from 80% of the simulated individuals

https://github.com/Arcadia-Science/accounting-for-nonlinear-phenotypes/tree/v1.0.1
https://zenodo.org/record/8371249


over 100 epochs with a batch size of 16. To all training data, we added 0.1 standard

deviation of noise. Following training, we predicted phenotypes on the remaining 20%

of the data. To evaluate the utility of increasing the number of phenotypes under

different values of pleiotropy and interaction, we trained individual models using 5, 10,

20, and 30 phenotypes, and evaluated the model accuracy on five phenotypes. We

calculated prediction error as the mean absolute percentage error. We implemented

the autoencoder in PyTorch [20].

Analysis of empirical phenotypes

After filtering, imputation, and rank normalization (see “Data collection/generation”

section) we computed the frequency of nonlinear phenotypic relationships for each

dataset. To do so, we fit a linear and a nonlinear model for all possible phenotypic pairs

within the dataset. We generated the linear model with a linear regression ( lm

function in R). W generated the nonlinear model using a generative additive model

( gam  function in the R package mgcv) with a single smoothing spline term (via the

mgcv function `s`). We compared model fits using the Akaike information criterion (AIC)

and considered three possible outcomes: a tie (equal AIC), the nonlinear model is a

better fit (nonlinear = lower AIC), or the linear model is a better fit (linear = lower AIC).

We then calculated the frequency of nonlinearity from the ratio of the number of cases

in which the nonlinear model had lower AIC compared to the full number of phenotypic

comparisons.

Given the possible diversity of phenotypic relationships within any given dataset, and

to facilitate the measurement of variance in nonlinearity rates, we used a permutation-

based approach to calculate nonlinearity across subsets of each dataset. To do so, we

calculated the nonlinearity rate for 1,000 random sets of phenotypes for each dataset

(data proportion per random set = 0.25). We visualized this distribution using violin

plots (as in Figure 1, A). We then measured the variation of these permutation

distributions using the R function var  (as in Figure 1, B) and calculated the correlation

between all phenotype pairs using Pearson’s correlation (as in Figure 1, C).



Analysis of synthetic phenotypes

To further dissect patterns of phenotypic nonlinearity, we generated 10,201 phenotypic

matrices spanning possible combinations between gene–gene interaction and

pleiotropy probabilities (each ranging from zero to one in increments of 0.01). We

measured the nonlinearity rate of each phenotypic matrix using the same approach

outlined above. We visualized the distribution of nonlinearity as a function of gene–

gene interaction and pleiotropy by creating a generalized additive model (GAM). Here,

nonlinearity was treated as a response variable predicted by gene–gene interaction

and pleiotropy and was implemented using the gam  function in the R package mgcv

(as in Figure 2, B). The predicted nonlinearity values are visualized in two dimensions,

representing all possible combinations gene–gene interaction and pleiotropy

probabilities.

We next wanted to characterize the entropy of full phenotypic datasets. Taking

influence from the phenotypic integration literature [21], we first calculated the

“generalized variance” (the determinant of the variance-covariance matrix) for each

phenotypic matrix. Generalized variance is a useful measure in that it allows us to

directly compare phenotypic datasets with different dimensionalities [21]. To extract a

single-vector descriptor, we then calculated the eigenvector of the generalized

variance matrix using spectral decomposition ( eigen  R function). We then calculated

the entropy of the leading eigenvector using the R function entropy.empirical  from

the R package entropy [22]. We could thus use the resulting entropy estimate to infer

the overall information contained among an arbitrarily large set of phenotypic

measurements.

We next developed a method to infer the correlational structure of a phenotypic set by

calculating entropy across increasingly large, random subsets of phenotypes. Broadly,

this method sweeps through pre-set portions of a dataset, randomly selects a set of

phenotypes for each portion, and calculates entropy using the method described

above. We applied this test to phenotypic matrices with varying probabilities of

pleiotropy (probability zero to one, 0.01 increments) by calculating entropy for

increasingly large proportions of samples (10% to 90%, 10% increments). For each

portion, we analyzed 10 permuted sets of phenotypes and calculated their mean

entropy. The results of this analysis appear in Figure 3, A. We extracted slopes of the

resulting entropy distributions from a linear regression ( lm  function in R) comparing

pleiotropy probability and entropy (Figure 3, B).



SHOW ME THE DATA: You can find all the data used in this pub, including

empirical and simulated phenotypes, on Zenodo (DOI:

10.5281/zenodo.8298808).

Autoencoder analyses

We calculated autoencoder prediction error as the mean absolute percent error

between prediction and ground truth. We conducted autoencoder training using 80%

of the individuals in the dataset and evaluated accuracy on the remaining 20%.

We calculated entropy as above using the same parameters (portions: 10% to 90% of

samples in 10% increments; 10 permutations per portion).

All code associated with this pub — including analysis notebooks, the

synthetic phenotype generator, and the autoencoder model — is available in

this GitHub repository (DOI: 10.5281/zenodo.8371249).

The results

Nonlinearity is prevalent among biological traits

To our knowledge, it remains unclear just how common additivity and linearity are in

genetic systems. To address this, we compiled a dataset of “polyphenotypes” (see

definition above) from a diverse set of interbreeding species populations (see

Approach for details). We reasoned that inferring the rate of nonlinear phenotypic

relationships would allow us to glean how well linear/additive models would fit these

populations.

Using a simple test (see Approach) we determined the (non)linearity of pairwise

phenotypic relationships within each species population. We found that all species

display rates of nonlinearity that are significantly greater than expected by chance (p <

https://zenodo.org/record/8298808
https://doi.org/10.5281/zenodo.8298808
https://github.com/Arcadia-Science/accounting-for-nonlinear-phenotypes/tree/v1.0.1
https://zenodo.org/record/8371249


0.001, Kruskal–Wallis test) (Figure 1, A), ranging from 43.5% (fruit flies) to 84.4%

(Arabidopsis) (Figure 1, A). These observations support the idea that nonlinearity is a

prevalent feature of biological phenotypes and contributes to a substantial portion of

species’ phenotypic relationships.

The range of nonlinearity also differs greatly across populations. For example,

nematodes display almost 10× more variation in phenotypic relationships than fruit

flies (C. elegans = 0.19, fruit flies = 0.029; mean normalized standard deviation) (Figure

1, B), while randomly generated data display the greatest degree of relative variation

(0.39; mean normalized standard deviation). Interestingly, these randomly generated

data should be largely independent of each other and, thus, may be considered

representative of a set of non-pleiotropic, additive traits. Supporting this idea, we

found that the mean pairwise correlation of the random phenotypes is significantly

less than that of the species data (Figure 1, C). Overall, these observations suggest that

complex aspects of phenotypic relationships may be inferred using a set of relatively

simple descriptive statistics.

However, given their heterogeneity, determining how epistasis and pleiotropy might

affect the frequency of phenotypic nonlinearity is hard using these datasets. Some

data come from advanced genetic crosses (e.g., the DGRP and JAX data) while other

datasets sampled variants from a diverse natural population (Arabidopsis). In addition,

the polyphenotypes reflect the interests of the original studies and, therefore, occupy

somewhat random and undetermined regions of phenotypic space. Therefore, while it

is apparent that nonlinearity exists in a variety of quantitative genetic datasets, it is

difficult to use these data to develop strong intuitions about its sources.



Characterizing phenotypic nonlinearity across species.

(A) Half-violin plots comparing the percentage of nonlinear

relationships among phenotypes for six species and a random

dataset. For each species, we present full sets of data points to the

left and show the distribution in the half-violin plot on the right.

(B) The degree of variation in nonlinear relationships for each

species.

(C) Half-violin plots comparing the distribution of phenotypic

correlations for each species.

Synthetic phenotypes let us interrogate

nonlinear effects

With this in mind, we sought to control many of these covariates to allow more direct

interrogation of pleiotropy, epistasis, and phenotypic structure. Using a novel

approach, we generated a series of polyphenotypes from simulated genotypic data.

Briefly, we generated n random genotypes from a probability distribution for a given

number of individuals (see Approach for a more in-depth description). Each genotype

could influence an output phenotype given a set probability distribution and could

interact with others via a predefined probability. We also allowed genes to influence

more than one phenotype with a set probability, letting us vary the amount of epistasis

(probability of gene–gene interactions) and pleiotropy (probability of phenotype–

phenotype interactions) in the data. Using this approach, we generated a dataset in

Figure 1



which all combinations of epistatic and pleiotropic probabilities were considered (from

P = 0 to P = 1, 0.01 increments). This produced a final set of 10,201 polyphenotypes,

each containing 20 synthetic phenotypes measured across 600 simulated individuals.

A main goal in generating this synthetic dataset was for it to capture a broad range of

nonlinear relationships. To assess how well the dataset accomplishes this, we used

the same test as above (see Figure 1; Approach) to calculate the rate of nonlinearity for

each of the 10,201 polyphenotypes. Notably, these percentages span the values

observed among the empirical phenotypes, with a mean nonlinearity rate of 47.53%

(min = 16%, max = 100%; Figure 2, A; Figure 1, A). In addition, nonlinearity varies

smoothly across the distribution of pleiotropy/gene interaction probabilities (Figure 2,

B). Together, these observations suggest that our data generation approach

successfully produced a naturalistic range of nonlinearity from which to sample.

The distribution of nonlinearity within a simulated

phenotypic dataset.

(A) Histogram of nonlinearity for all 10,201 simulated

phenotypic data matrices.

(B) The 2D distribution of nonlinearity (represented by color)

as a function of pleiotropy and gene–gene interaction

probabilities. We calculated the distribution using a

generative additive model.

Figure 2



Entropy and nonlinearity capture diverse

phenotypic interactions

How can we best identify drivers of biological nonlinearity? Can we statistically

decouple the effects of different genetic and phenotypic interactions? Motivated by

our efforts to apply information theory to genetics (more on this in a companion pub

coming soon), we hypothesized that we may start to untangle some of the drivers of

nonlinearity by measuring the information content (or “entropy” as defined in

information theory) of polyphenotypes. We reasoned that entropy may be informative

in multiple ways. First, overall entropy reflects the interrelatedness of polyphenotypes.

Lower values may reflect a set of phenotypes that are driven by the same underlying

biology (e.g., multiple, correlated measurements of a trait such as finger length). On the

other hand, higher values may indicate that polyphenotype data contain

measurements from multiple, orthogonal features of biology (e.g., finger length and

education level). The second way entropy may be informative is through its distribution

across different portions of a polyphenotype. Consider the case of completely

orthogonal phenotypes. If we select random combinations of orthogonal phenotypes

and measure their entropy, it should be the case that entropy proportionally increases

as we analyze larger and larger sets of phenotypes (i.e., more new information is being

added with each increase in the number of randomly chosen phenotypes). In contrast,

for a set of strongly correlated phenotypes (e.g., in the case of pleiotropy), one should

expect entropy to stay constant as we analyze larger sets of the phenotypes (i.e., no

new information is added).

Applying this framework to all 10,201 polyphenotypes, we calculated entropy across

increasing proportions of randomly selected phenotypes (see Approach). We found

that entropy distributions strongly vary with the probability of pleiotropy. Increasing

pleiotropy equates with a flattening of the distribution (Figure 3, A). This point is further

demonstrated by an extremely strong relationship between entropy distribution slopes

and pleiotropy (Pearson’s r = −0.95; Figure 3, B). These observations support the

notion that entropy is a reliable measure of the interrelatedness of a set of

phenotypes. What’s more, this suggests that, by analyzing the within-polyphenotype

distribution of entropy, we may infer the amount of phenotypic pleiotropy with minimal

knowledge of the underlying genetics.

Are similar measures available for determining the frequency of gene–gene

interactions? Taking a hint from the previously identified relationship between



nonlinearity and gene–gene interactions/pleiotropy in Figure 2, we found that

nonlinearity varies strongly in the absence of gene–gene interactions but decreases in

dynamic range as interaction probability increases (Figure 3, C). Furthermore,

comparing the relationship between the entropy slope and percentage of nonlinearity

reveals an interesting trade-off between gene–gene interactions and pleiotropy (Figure

3, D). There is an overall negative relationship (Pearson’s r = −0.82) suggesting that, as

pleiotropy increases, so too do nonlinear phenotypic interactions. Furthermore, as

gene–gene interactions increase (as indicated by point color in Figure 3, D), the

variance of entropy/nonlinearity relationships decreases.

Taken together, these results suggest that pleiotropy leads to increasingly nonlinear

phenotypic relationships, especially in the absence of genetic interactions.

Furthermore, we can study this trade-off via entropy and nonlinearity, which are both

non-genetic measures. Finally, these patterns indicate that phenotypic nonlinearity —

like that observed both here and among real phenotypes (Figure 1) — also reflects

genetic nonlinearities, hinting at potential insufficiencies of additive/linear models for

capturing the genetic components of biological traits.



Characteristics of gene interaction and pleiotropy

variation.

(A) Shannon entropy calculated across dataset proportions

for all pleiotropy probabilities. Entropy is measured in bits.

(B) Scatter plot of the slopes for each distribution plotted in

Figure 3, A. r: Pearson’s correlation.

(C) The percentage of nonlinear interactions between

phenotypes as a function of pleiotropy probability (x-axis).

(D) The joint distribution of entropy slope and % nonlinear

interactions for all 10,201 synthetic phenotype matrices. r:

Pearson’s correlation.

We indicate pleiotropy probability (A and B) and the probability of genetic interactions

(C and D) using a color scale.

Figure 3



Accounting for phenotypic nonlinearity

significantly increases predictive power

If genetic nonlinearities are truly prevalent across many types of biological traits, which

types of models might be better suited for capturing their effects? Neural network-

based strategies are enticing options for several reasons. Neural networks inherently

learn nonlinearities across their layers, letting them model complex interactions

between inputs and outputs (e.g., between phenotypes and genotypes). In addition,

they can model multiple inputs and outputs, facilitating nonlinear mapping of multiple

phenotypes at once. We therefore hypothesized that neural network strategies might

help us determine the benefit of accounting for complex, nonlinear interactions

between phenotypes.

To do this, we constructed an autoencoder for modeling and predicting phenotypic

relationships (see Approach; Figure 4, A). Taking simulated polyphenotypes as input,

the model encoded phenotypic relationships into a lower-dimensional latent space

and generated predictions via a decoder (Figure 4, A). We used this strategy to predict

aspects of all 10,201 polyphenotypes. Specifically, we generated four sets of

predictions for each, varying the number of input phenotypes (n = 5, 10, 20, 30) used to

predict an output set (n = 5; Figure 4, A). We then assessed the accuracy of each

model by calculating the percent error between observed and predicted phenotypes.

We found that the autoencoder approach predicted phenotypes with extremely high

accuracy (mean error = 1.76%; Figure 4, B) and that models become more accurate

when the number of input phenotypes increases (Figure 4, B). In fact, all models using

more than five input phenotypes display significantly decreased error distributions

(Kruskal–Wallis test followed by Dunn’s test; Figure 4, B). It’s also apparent that the

error distributions themselves display a degree of heterogeneity, with some clear

outliers displaying error percentages above 4% (Figure 4, B). Plotting percent error as

a function of pleiotropy shows that these outliers are associated with cases in which

the probability of pleiotropic interactions was very low (Figure 4, C), indicating that

pleiotropic interactions can help increase the accuracy of multi-phenotype models.

More broadly, it’s apparent that by accounting for nonlinearities such as pleiotropy,

autoencoder strategies are able to predict individual phenotypes with great accuracy.



An autoencoder for phenotypic prediction.

(A) Cartoon overview of the autoencoder architecture and

analytical design. We used phenotypic matrices of different

sizes (5, 10, 20, 30 phenotypes) as input to predict an

output set of five phenotypes.

(B) Violin plots comparing percent error for all predictions

from the four different model classes (5, 10, 20, 30

phenotypes). Asterisks indicate significant differences

according to a Kruskal–Wallis test followed by Dunn’s test.

(C) Model error as a function of pleiotropy probability for

the four model classes.

Finally, we explored whether these models could generate realistic polyphenotypes. To

do so, we measured the entropy of each set of predicted phenotypes. Overall entropy

decreases as the probability of pleiotropy increases (Figure 5, A), reflecting the

patterns observed among the input phenotypes (Figure 4, A). There is also a similarly

tight relationship between percent error and entropy across all models (Pearson’s r =

0.78; Figure 5, B). When comparing mean percent error and entropy slope, we found a

Figure 4



strong separation between the five-phenotype model and all others (Figure 5, C).

Models with more input phenotypes display lower entropy slopes and greater degrees

of model accuracy. Furthermore, the 10-phenotype model displayed the lowest error

rate and entropy slope (Figure 5, C), a pattern that is also apparent in the comparisons

of percent error across the models (Figure 4, B). It is interesting to consider that this

may reflect something important about the structure of the synthetic phenotypes.

Specifically, the 10-phenotype model may represent a better trade-off between input

phenotype information content and the overall model complexity (i.e., the 20- and 30-

phenotype models may just be adding redundant information).

In total, these findings suggest that the autoencoder did indeed create realistic

polyphenotypes with expected entropy distributions. Given this, we conclude that

models 1) accommodating polyphenotypic designs and 2) accounting for biological

nonlinearity provide opportunities to greatly increase the predictive capacity of genetic

analysis.

Characterizing autoencoder output.

(A) Entropy compared to pleiotropy probability for the four model

classes.

(B) The relationship between entropy slope and model error across

all runs. r: Pearson’s correlation.

(C) Entropy slope compared to mean error for each model class.

Figure 5



Key takeaways
Nonlinearity is a prevalent feature of biological phenotypes (Figure 1)

Phenotypic nonlinearity varies as a function of genetic and phenotypic interactions

(Figure 2)

Measures from information theory, such as entropy, can quantify the structure of

phenotypic interactions (Figure 3)

Models that account for nonlinearity and phenotypic interactions have increased

predictive potential and improve as the number of phenotypes increases (Figure 4)

Model accuracy varies as a function of the information content of phenotype sets

(Figure 5)

Implications
Biology is in an age of increasingly large, high-dimensional, and complex datasets.

Endeavors such as AlphaFold are attempting to map the full universe of protein

structures [23][24]. Similarly, a number of multi-team efforts are characterizing human

cell type diversity via a host of omics and cell biological data types [25]. These

datasets — and others like them — contain (or will contain) a diversity of phenotypic

measurements possessing unknown and complex inter-relationships. A goal for many

of these efforts will be to identify these relationships and, ultimately, use them to

decode the function of complex biological systems (e.g., identifying how RNA

expression, chromatin accessibility, and cell morphology interact to generate a cell

type). This undertaking butts up against a statistical sampling problem: is there enough

data available to power such analysis for the system you’re interested in? Put another

way, have you sampled enough of “phenotypic space” to account for the biology in

question?

These are hard questions to answer a priori. However, asking them is useful. If it’s

possible to efficiently sample phenotypic space, minimizing measurement

redundancy, then scalability and cost-effectiveness would correspondingly increase.

It’s interesting to consider how the aggregated results of this pub may help. Our

framework predicts that samplings of different parts of phenotypic space should be

associated with correspondingly variable parameter combinations (Figure 6). We’d

predict that sampling a single phenotype would be associated with uniformly low



values of entropy, nonlinearity, and predictiveness (Figure 6, A). On the other hand, if

multiple correlated phenotypes (perhaps due to pleiotropy) were sampled, the rate of

nonlinearity and predictiveness would increase, but entropy would not (Figure 6, B;

Figure 4, C). If multiple orthogonal phenotypes were measured, we’d find increased

entropy and predictiveness and a modest amount of nonlinearity (Figure 6, C; Figure 4,

C). Due to their numerical generality, it should be possible to measure the entropy and

nonlinearity of most (if not all) polyphenotypes.

Given this, we propose that these measures may be implemented as a general-

purpose toolkit for inferring the phenotypic structure, predictiveness, and even genetic

patterns (i.e., gene–gene interactions and pleiotropy) associated with a given

polyphenotypic dataset. There are likely many useful extensions of this. For one, we

can use phenotypic entropy to measure the complexity of a phenotypic dataset. We

could therefore determine if ongoing collection is adding new or informative

dimensions to a dataset. Similarly, we may use entropy and nonlinearity to estimate the

number of generative biological processes associated with a polyphenotype (if one,

then entropy should be low and nonlinearity high; if multiple, entropy will increase).

Indeed, the entropy of a polyphenotype is the number of bits of information necessary

to capture the phenotypic structure and, as a result, the generative processes that

drive that structure. With these measures in hand, it’s possible to hypothesize, a priori,

the structure of genetic mapping results and, by factoring in these patterns, design

studies around minimally necessary and maximally informative polyphenotypes.



Mapping phenotypic space.

(A) (Top) A cartoon representation of phenotypic space. Here,

we assume that we can use some form of high-dimensional

measurement to separate and cluster phenotypes. Individual

phenotypes are represented by colored shapes with increasing

densities (darker color) toward the center of the shape. The

amount of phenotypic space sampled is represented by the

filled dotted line. In Scenario 1, measurements for only a single

phenotype are available. (Bottom) Predicted measurements for

total entropy, the slope of entropy, nonlinearity, and overall

predictiveness (i.e., ability to predict a sampled phenotype

given the amount of space that has been sampled). Values are

represented as arbitrary units (AU).

(B) In Scenario 2, we’ve measured multiple correlated

phenotypes (as reflected by their same color). In this case,

nonlinearity increases due to the inter-phenotype correlation,

as does predictiveness.

(C) In Scenario 3, we’ve sampled multiple orthogonal (differently

colored) phenotypes, Here, entropy increases and nonlinearity

is somewhat lower than in Scenario 2 (since orthogonal

phenotypes tend to display higher rates of linear relationships).

We can still predict phenotypes with accuracy, but

Figure 6



proportionally less than in the situation of multiple correlated

phenotypes.

More generally, a “phenotype-forward” framework that allows for complex nonlinear

relationships between traits (as we suggest here) has the prospect of reflecting

organismal structure that is likely missed when we examine phenotypes individually.

For example, modeling height and weight simultaneously likely provides more

biological insight and predictive ability than modeling them independently, as some of

their causal mechanisms are shared. The neural network method we use here

explicitly captures these relationships and has the possibility of “encoding” the

generative processes for sets of phenotypes with at least partially overlapping causes.

Treating the organism as a system in this way has the potential to answer more

complex questions than modeling individual phenotypes alone. Such approaches may

prove critical to leveraging the increasing amount of phenotypic data to achieve better

biological understanding and outcomes across a host of problems.
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