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G–P Atlas extends genetic analysis with neural networks that model
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outcomes more accurately and reveals genetic influences that

traditional methods miss.
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Purpose
Genotype–phenotype relationships are central to our understanding of inheritance,

disease mechanisms, and evolutionary processes. Despite this, the most commonly

applied methods for genotype–phenotype mapping have changed little in the last 100

years, typically examining one phenotype and genotype at a time. We present G–P

Atlas, an innovative neural network framework that transforms genetic analysis by

simultaneously modeling multiple phenotypes and capturing complex nonlinear

relationships between genes. Our two-tiered denoising autoencoder approach first
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Background and goals
Decoding inheritance, disease, and evolution (as well as engineering biological

systems) relies on decoding the relationships between genes and phenotypes.

However, methods for mapping genotype–phenotype relationships have barely

changed over the last 100 years. Though biological systems are defined by complex,

often nonlinear interactions between genes, phenotypes, and environments ([1]; for

review, see [2] and [3]), most approaches focus on phenotypes in isolation and

assume linear, additive interactions between genes (see [4] and [5]; for review, see [6]

and [7]). As a result, even in the best cases, a substantial portion of biological

phenomena may be missed. In the worst cases, models may point us in completely

wrong directions.

The focus on individual genes likely results from computational complexity — allowing

interactions between all genes using current modeling methods would often require

data from more humans than exist. And at the population level, gene–gene

learns a low-dimensional representation of phenotypes and then maps genetic data to

these representations, leading to a data-efficient training process.

We find that G–P Atlas predicts many phenotypes simultaneously from genetic data

and successfully identifies causal genes — including those acting through non-additive

interactions that conventional approaches may miss. Thus, by modeling organisms

holistically rather than as collections of isolated traits, G–P Atlas enables accurate

phenotype prediction while revealing previously unappreciated genetic drivers of

biological variation.

This framework should interest researchers in quantitative genetics, evolutionary

biology, precision medicine, and computational biology who rely on accurate

genotype–phenotype models. We welcome feedback on potential applications and

extensions of G–P Atlas as we work toward comprehensive models that capture the

true complexity of living systems and their genetic underpinnings.

Data and all associated code from this pub are available in this GitHub repo.

https://github.com/Arcadia-Science/2025-g-p-atlas


interactions drive only a small fraction of phenotypic variation ([8] and [9]; for review,

see [10]). However, we're most often concerned with predicting the phenotypes of an

individual (not a population) where gene–gene interactions may have dramatic

impacts.

Like genotypes, most studies consider phenotypes individually. But many phenotypes

share a generative process structured by genetics (e.g., pleiotropy or a single gene

impacting multiple phenotypes), physics (e.g., cellular surface-area-to-volume ratio), or

evolution [2][11][12][13]. Such mechanisms drive complex phenotype–phenotype

relationships [2]. We’ve previously shown that these relationships can be leveraged to

better predict phenotypes [2][14][15][16].

Machine learning models offer promising opportunities for capturing gene–gene

interactions and modeling many phenotypes that are computationally tractable [17].

Recent approaches include the following:

Random forest methods demonstrate valuable capabilities for modeling epistatic

effects through their intrinsic architecture and provide interpretable feature

importance metrics [18]

Specialized approaches like multifactor dimensionality reduction designed for

detecting gene–gene interactions have opened new avenues for exploring genetic

architecture [19]

Kernel methods can model complex genetic effects on arbitrarily structured

phenotypes [20]

Multi-task learning frameworks have advanced our ability to model traits jointly,

recognizing their biological interconnectedness [21]

Variational autoencoders offer powerful approaches for learning compressed

genetic representations that can reveal underlying population structure [22]

Despite these advances, a framework that efficiently captures gene–gene interactions,

simultaneously modeling many phenotypes and retains interpretability to allow the

identification of genes influencing phenotypes remains elusive.

One ongoing problem with the application of machine learning to the modeling of

biological systems is data scarcity. Collecting biological data is expensive; almost all

biological studies are data-limited. Furthermore, while many machine-learning

approaches (including artificial neural network-based methods) can learn higher-order



complex relationships between parameters, achieving this requires comparatively

large amounts of data. In several applications to biological data, machine learning

models not designed to be data-efficient failed to learn higher-order (nonlinear)

relationships, though such relationships were present [23][24][16]. This was true even

for models using modern architectures specifically designed to capture higher-order

relationships (e.g., attention), which have been effective in other data containing such

complex interactions (e.g., written language) [25]. The application of machine learning

to biological questions will require data-efficient architectures.

We sought to create a modeling framework that achieved four goals:

�. Simultaneously modeling multiple phenotypes and genotypes (and potentially

environments) to achieve a more holistic model for an organism.

�. Capturing nonlinear relationships among genotypes, phenotypes, and

environments.

�. Sufficient data efficiency to accommodate real-world biological research

constraints.

�. A capacity for inference (e.g., identifying causal genotypes and predicting

phenotypes).

Here, we demonstrate G–P Atlas, a modeling framework that addresses many of these

needs and might serve as a replacement for many current genetic methods.

Access all our data, including simulated and empirical phenotypes and

genotypes, in this GitHub repo (DOI: 10.5281/zenodo.16782901).

The approach
To see how the G–P Atlas performs, skip straight to “The results.”

https://github.com/Arcadia-Science/2025-g-p-atlas
https://doi.org/10.5281/zenodo.16782901


Architecture

We adopted a denoising autoencoder framework to capture phenotype–phenotype

relationships and allow for gene–gene and gene–environment interactions.

Autoencoders consist of multiple neuronal layers comprising an encoder that aims to

create a compressed, efficient data encoding by passing that data through an

information bottleneck and a decoder capable of taking this reduced (latent) data

representation and accurately reproducing the original input data [26]. They can be

robust to missing and corrupted data (denoising, [27]), enable dimensionality reduction

[28], and can capture nonlinear relationships among parameters [29]. They've been

the subject of extensive research, and many differing architectures perform differently

well across various tasks [26][30][31][32].

Denoising autoencoders (trained for accuracy despite deliberately corrupted input

data) are particularly attractive for modeling biological data because they're robust to

measurement noise and missing data and can capture complex relationships among

parameters even with minimal data [27]. While conventional autoencoders can learn

simple embeddings (such as the identity function), they're unlikely to capture the full

complexity of relationships among genotypes and phenotypes. Denoising models

learn more general manifolds that are more likely to capture the actual constraints

(e.g., genetic and evolutionary) that structure biological systems. For a more expanded

discussion of these points, see the Mathematical framework and theoretical

foundations section.

G–P Atlas has a two-tiered architecture and training procedure. We first trained a

phenotype–phenotype denoising autoencoder (Figure 1, A). Then, we conducted a

second round of training to map genotype data into the learned latent space of the

phenotype decoder (Figure 1, B) such that genetic data predict phenotypes. During this

round of training, we held the weights of the phenotype decoder (Figure 1, B; blue)

constant, minimizing the number of parameters trained during this “mapping”

procedure. We supplemented the phenotype data with Gaussian-distributed noise and

genotype data with missing and erroneous genotypes during training.

Each encoder and decoder contains three layers. All input and internal layers had leaky

rectified linear (leaky ReLU, negative slope of 0.01) activation functions [33] and were

batch-normalized [34] with a momentum of 0.8. The output layer for all networks

producing phenotypes had a linear activation function. We instantiated all networks

using PyTorch (v2.2.2, RRID: SCR_018536 [35]).



Schematic representation of the G–P Atlas

architecture.

(A) Schematic representation of the phenotype–

phenotype autoencoder.

(B) Schematic representation of the genotype–

phenotype training phase.

The color indicates layers trained with phenotypic data

(blue) or genetic data (orange).

Training procedure

We adopted the following training procedure:

�. Train a denoising phenotype–phenotype autoencoder where a model predicts

uncorrupted phenotypic data from corrupted phenotypic data. The learned latent

representation is an information-rich encoding of those phenotypes with fewer

dimensions than the initial data.

�. To create genotype-to-phenotype mappings, we conducted a second round of

training with paired (for each individual) genetic and phenotypic data. We made a

new network that maps genotypic data into the latent space from the phenotype

decoder. We fixed the parameter weights of the previously trained phenotypic

Figure 1



decoder. We then trained the model to predict the uncorrupted phenotypic data

based on corrupted genotypic data.

For each dataset, we tuned the following hyperparameters: the size of the latent

space, the size of the hidden layers, and the amount of added noise using grid search.

To tune each hyperparameter, we trained the networks using 80% of the data (the

training set) and tested prediction accuracy using the remaining 20% (the test set). We

used a batch size of 16 and 250 epochs for all training. After 250 epochs of training, we

evaluated the model. We performed gradient descent using the Adam optimizer [36]

with momentum decay parameters of 0.5 (β₁) and 0.999 (β ), no weight decay, and a

learning rate of 0.001. For genotype-to-phenotype training, we regularized the weights

mapping genotypes to the phenotype latent space: L  norm (weight of 0.8) and L  norm

(weight of 0.01). As all phenotypes modeled here were quantitative, we used the mean

squared error loss function to train any network that outputs phenotype predictions. All

reported statistics are for the 20% test dataset.

Variable importance

To estimate the importance of any particular parameter (a specific phenotype or

genotype at a specific location) for predicting phenotypes or genotypes, we used

permutation-based feature ablation as implemented in Captum [37]. Briefly, the

importance of each feature is measured as the mean shift in the predicted phenotype

distribution when we omit that feature. This measure is determined independently for

each allelic state. For each allele, the reported statistic is the mean squared variable

importance. To identify loci (where there may be more than one allelic state)

contributing to phenotypic variation, we used the largest variable importance from the

set of alleles at that locus. The variable importance was calculated using the 20% test

dataset.

Datasets

We evaluated this approach using two datasets: one simulated dataset that we have

used previously [38] and an extensively studied genotype–phenotype dataset that

resulted from an F1 cross between two budding yeast (Saccharomyces cerevisiae)

strains [39]. An extensive description of the simulated dataset is available in [38].
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Briefly, we simulated genotypes for 600 individuals at 3,000 loci. For each of the 30

phenotypes, 10 loci contribute additively to phenotypic variation. We gave each causal

locus a 20% probability of influencing each other phenotype (pleiotropy) and a 20%

probability of interacting with each other contributing locus (epistasis or gene–gene

interactions). All gene–gene interactions were multiplicative. An extensive description

of the yeast dataset is available in [39]. Briefly, the strains are haploids that result from

a cross between two Saccharomyces cerevisiae strains. The dataset contains marker

data for 1,000 offspring at 11,623 loci and measurements for 46 continuous

phenotypes. Each of these phenotypes was growth under differing conditions.

Data preparation

We formatted the data as a single Python dictionary with one entry for phenotypes and

another for genotypes. For train/test datasets, we split the full dataset into two smaller,

identically structured datasets. As previously described, 80% of the data comprised

the training set, and the remaining 20% comprised the test set.

Statistical analysis

We conducted all formal statistical tests using implementations in the SciPy (v1.15.2,

RRID: SCR_008058) statistics package [40].

Variable importance distribution analysis (VIDA)

Overview

We developed variable importance distribution analysis (VIDA), a novel unsupervised

method for detecting gene–gene interactions from machine learning variable

importance scores. VIDA identifies interaction candidates by analyzing distribution

patterns of extreme importance values, based on the hypothesis that interacting loci

exhibit coherent activation patterns characterized by specific extreme value co-

occurrence and clumpiness signatures.



Input data

VIDA requires a variable importance matrix  of dimensions  x , where 

represents samples and  represents loci. Each element  indicates the

importance of locus  for sample , as determined by any machine learning method

(e.g., random forests, gradient boosting, neural networks). Zero values indicate loci with

no measured importance for a given sample.

Algorithm description

Step 1: Z-score standardization

For each locus , we calculated z-scores to standardize importance values across loci

while preserving distributional characteristics:

For each locus j:

    non_zero_values = {V[i,j] : V[i,j] ≠ 0}

    µⱼ = mean(non_zero_values)

    σⱼ = std(non_zero_values)

    Z[i,j] = (V[i,j] - µⱼ) / σⱼ  for all i where V[i,j] ≠ 0

This standardization enables consistent extreme value detection across loci with

different importance scales.

Step 2: Unsupervised partner identification

We identified potential interaction partners for each locus using pairwise similarity

measures. For each pair of loci ( ), we calculated:

Correlation component

valid_samples = {i : Z[i,j₁] ≠ 0 AND Z[i,j₂] ≠ 0}

ρⱼ₁,ⱼ₂ = correlation(Z[valid_samples, j₁], Z[valid_samples, 

Co-occurrence component
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p V ij

j i

j
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extreme_j₁ = {i : |Z[i,j₁]| > z_threshold}

extreme_j₂ = {i : |Z[i,j₂]| > z_threshold}

co_extreme = |extreme_j₁ ∩ extreme_j₂|

expected_co_extreme = |extreme_j₁| × |extreme_j₂| / n

φⱼ₁,ⱼ₂ = co_extreme / expected_co_extreme

Combined similarity

similarity(j₁,j₂) = (|ρⱼ₁,ⱼ₂| + φⱼ₁,ⱼ₂) / 2

For each locus  we selected the top 10% of loci with the highest similarity scores as

potential interaction partners.

Step 3: Sample-level pattern analysis

For each sample  and locus , we computed two complementary metrics:

Extreme ratio difference

We quantified the tendency for extreme co-occurrence with partners versus non-

partners:

partner_extreme_ratio = |{k ∈ partners(j) : |Z[i,k]| > z_thr

non_partner_extreme_ratio = |{k ∉ partners(j) : |Z[i,k]| > z

extreme_ratio_diff[i,j] = partner_extreme_ratio - non_partne

Clumpiness difference

We measured the concentration of importance values in the top percentile:

clumpiness(values, percentile) = Σ(top_percentile_values) / 

partner_clumpiness = clumpiness(Z[i, partners(j)], 5%)

non_partner_clumpiness = clumpiness(Z[i, non_partners(j)], 5

clumpiness_diff[i,j] = partner_clumpiness - non_partner_clum

j

i j



Step 4: Locus-level projection

We aggregated sample-level metrics to obtain locus-level interaction scores:

For each locus j:

    extreme_samples = {i : |Z[i,j]| > z_threshold}

    avg_extreme_ratio_diff[j] = mean(extreme_ratio_diff[i,j]

    avg_clumpiness_diff[j] = mean(clumpiness_diff[i,j] for i

    VIDA_score[j] = avg_extreme_ratio_diff[j] × avg_clumpine

Parameter optimization

We systematically optimized key parameters using grid search with receiver operator

characteristic (ROC) analysis:

z_threshold: Tested values [1.5, 2.0, 2.5, 3.0] for defining extreme importance values

clumpiness_percentile: Tested values [5%, 10%, 15%, 20%] for concentration

analysis

clumpiness_method: Tested concentration, Gini coefficient, entropy, and adaptive

methods

We selected optimal parameters based on area under the ROC curve (AUC)

performance: z_threshold = 2.0, clumpiness_percentile = 5%, method =

concentration.

Mathematical framework and
theoretical foundations
G–P Atlas leverages the denoising autoencoder architecture, which provides

theoretical guarantees for learning robust representations from noisy, high-

dimensional data [26][27]. This approach is particularly well-suited for biological data,

where measurement noise is common, and sample sizes are limited relative to the

complexity of the underlying system.



G–P Atlas aligns with the manifold hypothesis that high-dimensional data often lie on

or near a lower-dimensional manifold [41]. In the context of biology, this manifold is

constrained by genetic, environmental, physical, and evolutionary factors (e.g., [42]

and [13]). By training models to reconstruct clean inputs from corrupted versions, we

capture the statistical dependencies and constraints governing these biological

manifolds rather than merely memorizing training examples [27].

Mathematical formulation

Phenotype autoencoder

Let  represent our phenotype (trait, ) data matrix for  individuals and 

phenotypes. Following the denoising autoencoder approach [27], we first corrupt the

original data:

For phenotypic data, we use additive Gaussian noise:

The phenotype encoder ( ) maps this corrupted data to a lower-dimensional latent

space  where :

The encoder consists of three neural network layers with leaky ReLU activations and

batch normalization. The phenotype decoder ( ) attempts to reconstruct the original,

uncorrupted phenotypes:

The training criterion minimizes the expected reconstruction error over the empirical

distribution:

Where  is our loss function (mean squared error):

T ∈ R
n×m

T n m
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~

q  ( ∣T )D T
~

=T
~
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Genotype-to-latent encoder

Let  represent our binary genotype data matrix for  individuals and 

loci. Similar to the phenotype data, we corrupt genotype data during training:

For genetic data, which is binary, we use masking noise that randomly flips a

percentage of the bits:

The genotype encoder ( ) maps this corrupted genetic data directly to the phenotype

latent space:

During the genotype-to-phenotype training phase, we hold the phenotype decoder

parameters fixed and train only the genotype encoder parameters. We minimize the

regularized loss function:

Where  represents the phenotypes predicted from corrupted

genotypes, and the additional terms are  and  regularization with weights 

 and , respectively.

Theoretical relevance to biological systems

The denoising autoencoder approach offers several properties that are particularly

relevant for genotype–phenotype mapping:
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�. Manifold learning: By training on corrupted inputs, the model learns to project

data back onto the data manifold, effectively capturing the constraints that shape

phenotypic relationships [27]. For biological systems, these constraints include

physical laws, developmental pathways, and evolutionary pressures that limit the

space of possible phenotypes.

�. Extraction of biological processes: The latent representations learned by

denoising autoencoders capture statistical dependencies in the data rather than

merely compressing it. In the biological context, these representations may

correspond to underlying biological processes or functional modules that

determine phenotypic outcomes.

�. Robustness to missing data: The corruption process during training teaches the

model to handle missing or noisy inputs, making it particularly suitable for

biological datasets where measurement noise and missing values are common.

�. Data efficiency: By forcing the model to reconstruct clean data from corrupted

inputs, denoising autoencoders learn more robust features with fewer training

examples than standard autoencoders. This property is crucial for genotype–

phenotype mapping, where biological data collection is expensive, and datasets

are typically limited in size.

Variable importance quantification

G–P Atlas provides a natural way to assess variable importance through feature

ablation. For a given allele  at locus , we interpret its importance as the expected

error in the phenotypic reconstruction when that feature is corrupted, but other

features are intact:

Where  represents the genotype with allele  artificially modified. Empirically, we

approximate this expectation as:

a j

V  =a,i EG[( i(G) −T̂  (G )) ]T̂ i
(a) 2

G
(a) a

V  =a,i   ( k, i −
n

1

k=1

∑
n

T̂ k, i )T̂ (a) 2



This measure captures both direct effects and nonlinear interactions with other loci,

providing a more comprehensive set of genetic influences than traditional additive

models.

For loci with multiple allelic states, we define the overall importance  of locus  as:

Where  is the set of all alleles at locus .

This mathematical framework enables G–P Atlas to simultaneously model multiple

phenotypes, capture nonlinear relationships among genotypes and phenotypes, and

efficiently leverage limited biological data — advancing us toward a more

comprehensive understanding of the complex relationships between genotype and

phenotype.

All code generated and used for the pub is available in this GitHub repository.

The results

Access all of our data, including simulated and empirical phenotypes and

genotypes, in this GitHub repo.

Our development and evaluation of G–P Atlas followed a systematic approach to

validate both its architectural design and practical applications. We first established

proof-of-concept using simulated data with known ground truth relationships, allowing

us to rigorously assess the framework's ability to capture phenotype–phenotype

relationships, predict phenotypes from genotypes, and identify causal genetic variants.

We then applied G–P Atlas to experimental yeast data, comparing its performance

against traditional genetic analysis methods to demonstrate its enhanced capabilities

in real biological contexts. We focus on three critical aspects of performance:

prediction accuracy for multiple traits simultaneously, explanatory power for

phenotypic variance, and capacity to identify both linear and nonlinear genetic

influences.

V  j j

V  =j  V  

a∈A  j

max a

A  j j

https://github.com/Arcadia-Science/2025-g-p-atlas
https://github.com/Arcadia-Science/2025-g-p-atlas


Architecture validation: Simulated data

We first applied G–P Atlas to simulated data where the causal relationships are known.

These data provide a controlled validation environment to measure our model's ability

to recover known genetic architecture and quantify its prediction accuracy against a

ground truth. We simulated data as described previously [38]. In contrast to empirical

data, these simulated data are simple, with no population structure or linkage among

loci. This simplification allows us to isolate the direct effects of genetic variants on

phenotypes without the complexities that linkage disequilibrium or population

structure would introduce. We then calculated phenotypes as the sum of all genetic

influences and added 1% noise. These data served as our initial validation set.



Phenotype–phenotype and genotype–phenotype predictions are

accurate.

(A) Comparison of predicted and real phenotypes generated by the

phenotype–phenotype autoencoder. Data points are

individual/phenotype pairs. The color indicates phenotype. Plotted are

predictions for 30 phenotypes.

(B) Densities for errors from phenotype–phenotype prediction

aggregated across phenotypes (blue) and individuals (orange).

(C) Comparison of predicted and real phenotypes generated by

genotype–phenotype mapping. Data points are individual/phenotype

pairs. The color indicates phenotype. Plotted are predictions for 30

phenotypes.

Figure 2



(D) Densities for errors from genotype–phenotype prediction

aggregated across phenotypes (blue) and individuals (orange).

An organism’s phenotypes are interconnected to varying degrees through shared

genetic architecture, developmental pathways, and physical constraints. Holistic

models of biological systems must be able to account for the complexity of

phenotype–phenotype relationships. We assessed the predictive capability of G–P

Atlas by examining the accuracy of phenotype–phenotype prediction on the

unperturbed test data. This autoencoder provided an accurate prediction of our test

data (Figure 2, A), producing low prediction errors (mean absolute percentage error,

MAPE) for phenotypes and individuals (Figure 2, B; median MAPE per phenotype =

3.78, blue line; median MAPE per individual = 3.54, orange line). Thus, this autoencoder

learns a generalizable encoding of phenotypes robust to noise. The complete model

can predict phenotypes of new samples, and we'll leverage this lower-dimensional

encoding space for genotype–phenotype mapping.

Having established G–P Atlas's ability to model phenotype–phenotype relationships,

we next evaluated its ability to predict phenotypes from genotypic data, a fundamental

challenge in genetics. We trained a model that predicted phenotypes from genotypes.

We connected the input of the pre-trained phenotype decoder (Figure 1, B; blue) to the

output of an untrained genotype encoder (Figure 1, B; orange). We then conducted a

second round of training, holding decoder weights constant. The training goal was to

predict phenotypes from genotypes. We corrupted the genotypic inputs by randomly

changing 80% of allelic states. While less accurate than the phenotype–phenotype

model, this genotype–phenotype mapping provided accurate predictions for our test

data (Figure 2, C), both for phenotypes (Figure 2, D; median MAPE per phenotype =

9.11, blue line) and individuals (Figure 2, D; median MAPE per individual = 9.02, orange

line). The model, therefore, learns an accurate, robust, and generalizable mapping

between genotypes and phenotypes. This enables the prediction of many phenotypes

directly from genetic data and suggests the potential to capture both linear and

nonlinear relationships in more complex biological datasets.



Ablation variable importance can be used to identify genes influencing

phenotypes.

(A) The mean squared variable importance for each locus known to influence

any one phenotype is plotted against the known additive genetic influence of

that same locus. The orange line indicates the 1% false positive threshold.

(B) The Receiver Operator Characteristic curve demonstrates that variable

importance is an effective classifier for loci influencing a phenotype through

the relationship between false positive rates and false negative rates for

differing mean squared variable importance thresholds. AUC indicates the

area under the curve.

A central goal of genetic models (including G–P Atlas) is the identification of genotypes

that influence phenotypes. We determined the phenotypic influence (variable

importance) of a locus by measuring the change in the predicted phenotype

distribution when a locus was omitted. If this measure only captures additive genetic

influences of a locus, we might expect variable importance to be correlated with the

known additive contribution of a locus. However, we found no clear correlation

(Figure 3, A). This lack of correlation could be related to the non-additive effects of

these loci. Nevertheless, using this statistic, we can identify most loci that influence

phenotypes (Figure 3). A threshold of 1% false positive identified 96.8% (179/185) of

influential loci (Figure 3, A), and a receiver–operator analysis had an area under the

curve of 0.93 (Figure 3, B), consistent with the accurate classification of alleles

influencing phenotypes.

Figure 3



While the G–P Atlas architecture could capture gene–gene interactions, we wanted to

investigate if it uses interactions for its phenotype predictions. We therefore asked two

questions. First, knowing which loci are involved in interactions, can we determine

whether these loci influence the predicted phenotypes differently than loci that act

only directly? Second, can we develop a statistic that would allow us to enrich for loci

involved in gene–gene interactions so that we can prioritize loci for further network

analysis? To address both questions, we focused on the variable importance metric

described above because it directly quantifies how strongly a given locus influences

phenotypic predictions.

When examining the variable importance estimate for each individual at each locus,

we found that the distribution of measures is significantly more kurtotic (heavy-tailed)

than the distribution for loci that aren't involved in interactions as indicated by

significant deviation from the unity line in the upper and lower quantiles in a Q–Q plot

(Figure 4, A, Q–Q plot; B, bootstrap kurtosis test, p < 0.001). This shows that, for some

individuals, loci that can act through interactions cause larger changes in the

phenotype distribution than loci that can’t act through interactions. This is consistent

with the expected impact of gene–gene interactions in our simulated dataset, where

the interaction effects are multiplicative and likely to drive extreme phenotypes.

Alleles involved in interactions can have extreme variable importance measures in

some individuals. Given this, we developed a per-allelic state statistic, variable

importance distribution analysis (VIDA), to indicate whether an allelic state at a specific

locus is involved in an interaction. VIDA captures two intuitions. First, interacting alleles

should share patterns of extreme variable importance across individuals. Second,

interacting alleles should have similarly extreme variable importance values. The

average VIDA score for interacting alleles was significantly higher than that of non-

interacting alleles (median 0.00205 interacting vs. median −0.000503 non-

interacting, p < 0.001, Mann–Whitney U). This is consistent with the idea that the

statistic measures interaction involvement. However, VIDA proved to be only modestly

useful for the classification of alleles as interacting or non-interacting (Figure 5, A; ROC

AUC 0.64, sensitivity of 0.528, specificity of 0.718). Nevertheless, VIDA can provide

significant enrichment of interacting loci in the upper percentiles of the score

(Figure 5, B; hyper-geometric test, enrichment by percentile of VIDA score: 1.4× ±

0.93–1.70 in top 10%, 1.35× ± 1.13–1.54 in top 20%, p < 0.001 for both, ± = 95%

confidence interval) indicating that it could be helpful in prioritizing loci with higher

chances of involvement in interactions for subsequent experimentation. Overall, the

ability to enrich alleles involved in interactions based on these variable importance



scores suggests that, to some degree, G–P Atlas is leveraging gene–gene interactions

for phenotypic prediction.

Variable importance values are more extreme for interacting loci than for

non-interacting loci.

(A) Quantile–quantile plot of variable importance measure compared between

loci that act through gene–gene interactions and those that don’t. The orange

line indicates equivalency between distributions. Grey indicates 95% confidence

interval.

(B) Kurtosis for bootstrapped samples from variable importance measures of

interacting (blue) and non-interacting (red) loci. Dashed lines indicate mean

values. Solid lines are kernel density estimates.

Figure 4



G–P Atlas can be used to enrich for alleles involved in gene–gene

interactions.

(A) Receiver operator curve for VIDA statistic and whether alleles are involved in

interactions or not. The orange line indicates random. Red circle indicates

optimal (Youden’s index) ROC value with sensitivity of 0.528, and specificity of

0.718.

(B) Enrichment of interacting loci as a function of percentile threshold in VIDA

scores. The dashed line indicates no enrichment.

Our simulated data analysis confirms that G–P Atlas can successfully learn meaningful

phenotype representations, predict multiple traits simultaneously from genetic and

phenotypic data, and identify causal genetic variants with high sensitivity and

specificity. Furthermore, it uses gene–gene interactions to make these predictions.

This proof-of-concept validation establishes a foundation for applying G–P Atlas to

experimental biological data, where we can assess whether its unique capabilities

translate to significant improvements over conventional genetic analysis methods in

capturing the full spectrum of genetic influences on complex traits.

Figure 5



Architecture application: Yeast cross data

Next, we applied G–P Atlas to real biological data. We analyzed an extensively studied

population from a cross between two yeast strains (Saccharomyces cerevisiae) [39].

While we don't know the true relationships between genes and phenotypes in this

population, other researchers have conducted many genetic analyses mapping genes

to phenotypes, providing a benchmark to evaluate the performance of G–P Atlas

relative to conventional approaches.



Phenotype–phenotype and genotype–phenotype predictions are

accurate for a hybrid yeast population.

(A) Comparison of predicted and real phenotypes generated by the

phenotype–phenotype autoencoder. Data points are

individual/phenotype pairs. The color indicates phenotype. Plotted are

predictions for 46 phenotypes.

(B) Densities for errors from phenotype–phenotype prediction

aggregated across phenotypes (blue) and individuals (orange).

(C) Comparison of predicted and real phenotypes generated by

genotype–phenotype mapping. Data points are individual/phenotype

pairs. The color indicates phenotype. Plotted are predictions for 46

phenotypes.

Figure 6



(D) Densities for errors from genotype–phenotype prediction

aggregated across phenotypes (blue) and individuals (orange).

Empirical data presents additional complexity compared to simulations. It's

complicated by measurement noise, environmental variation, and unobserved factors

that can obscure phenotype–phenotype relationships. Despite these challenges, G–P

Atlas accurately predicts phenotypes from phenotypes in biological data (Figure 6, A–

B), yielding low prediction errors (mean squared error, MSE) when aggregated across

phenotypes or individuals (Figure 6, B; median MSE per phenotype of 2.87, blue line;

median MSE per individual of 1.60, orange line). This robust performance in predicting

phenotypes from other phenotypes demonstrates that G–P Atlas effectively captures

the underlying constraints linking multiple traits, reflecting phenomena such as

pleiotropy, physical constraints, and shared developmental pathways that create

relationships between seemingly distinct traits.

Next, we evaluated the primary function of G–P Atlas: predicting phenotypes directly

from genotypic data. As with simulated data, the model accurately predicts

phenotypes from genotypes in this biological scenario (Figure 6, C–D), yielding low

prediction errors when aggregated across phenotypes or individuals (Figure 6, D;

median MSE per phenotype of 6.89, blue line; per individual of 4.31, orange line). G–P

Atlas produces robust and somewhat accurate genotype–phenotype mapping,

translating genetic information into comprehensive phenotypic predictions for multiple

traits.

G–P Atlas does not account for as much phenotypic

variation as traditional linear models

To evaluate the performance of G–P Atlas relative to the traditional explanatory models

mentioned above, we compared the total fraction of phenotypic variation (coefficient

of determination) captured by G–P Atlas to the fraction of phenotypic variation

captured using a linear modeling approach. In particular, we compared it to a set of

linear models, one for each phenotype, based on the additive contribution of

significantly linked loci [39]. Similar models are frequently used in agriculture (genomic

prediction, [43]) and medicine (disease risk prediction through polygenic risk scores,

[44]).



As with G–P Atlas, this linear method relies on molecular-genetic information. It’s also

two-tiered: for each phenotype, the model identifies loci linked to that phenotype

through a quantitative trait linkage analysis and subsequently uses variation at the

linked loci to infer phenotypes under that fitted model [39]. We found that, for all

phenotypes, G–P Atlas explained significantly less phenotypic variation than the linear

model (p < 0.001, Wilcoxon rank sum test). This suggests that, despite the fact that this

model can be used to identify individual genes influencing phenotypes and can

provide reasonably accurate phenotypic predictions, it isn't as data-efficient as a linear

model with a dataset of this size.

G–P Atlas likely captures relationships among genes

that influence phenotypes

To evaluate whether G–P Atlas captures nonlinear relationships among genes, we

compared the performance of the full model to a version of the model that has a

reduced ability to capture such relationships. The hidden layers in autoencoder allow

the models to capture relationships among input parameters [29]. Without hidden

layers, an autoencoder will result in a mostly linear transformation of the data [45][46].

Therefore, we used the same yeast dataset to train a different version of G–P Atlas

without a hidden layer in the genotype encoder limiting the capture of gene–gene

interactions. We then compared the explanatory power of this simplified model to that

of the full G–P Atlas. We found that the full model explained significantly more variation

than the reduced models (p < 0.002, Wilcoxon rank sum test), suggesting the full

model captures meaningful interactions between genotypes and these interactions

increase the prediction capacity.



G–P Atlas identifies individual genes driving



phenotypic variation

G–P Atlas identifies genes influencing phenotypes in a hybrid yeast

population.

(A) Plotting of scaled squared variable importance per locus as a function of

genomic position in nucleotides. Variable importance is calculated per allelic

state. Each locus has two allelic states. The larger of the two variable importance

values is shown. The colors and numbers at the bottom indicate chromosomes.

The dotted line indicates the 95th percentile of variable importance values. Blue

vertical bars indicate portions of the genome previously linked to phenotypic

variation.
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(B) A plot of the fraction of loci previously identified to be linked to a phenotype

as a function of variable importance threshold.

(C) A plot of the additive phenotypic variance explained by each locus on the

specific linked phenotype and the variable importance of that locus for the whole

phenotype set.

Our analyses of this yeast data have thus far focused on the ability of G–P Atlas to

predict or explain genetically driven variation in phenotypes holistically without

focusing on any individual gene or phenotype. However, many genetic analyses aim to

identify the particular genes that cause phenotypic variation. Thus, we next evaluated

our ability to identify such genes using G–P Atlas and the ablation variable importance

measure described above to find genes influencing phenotypes in these yeast data

(Figure 7). This could allow us to identify genes acting solely through gene–gene

interactions, which isn’t possible with current approaches.

Depicted in Figure 7, A is the importance of each locus in determining the distribution

of all phenotypes plotted against the genomic position of that locus. This plot captures

several promising anecdotal observations about the behavior of this statistic. First, the

variable importance measure captures genetic linkage. That is, the variable

importance of proximal markers is similar. This is consistent with a young population

that hasn't gone through many generations and genetic recombination events, so

proximal markers are still genetically linked. Second, most variable importance peaks

fall within regions of the genome that have previously been linked to one of the

measured phenotypes (depicted as blue vertical bars), suggesting variable importance

may be helpful in identifying genes influencing these phenotypes. Third, we find

variable importance peaks in genomic regions not previously linked to these

phenotypes, suggesting our approach potentially identifies new loci influencing

phenotypes, possibly through gene–gene interactions. Overall, these findings suggest

that variable importance is a measure that's consistent with known biology and can

identify new biology.

To more directly test the use of variable importance in identifying genes influencing

phenotypes, we determined the cumulative fraction of loci previously identified to

influence phenotypes above each percentile in the empirical distribution of

importance values (Figure 7, B). We took this approach because, unlike the simulated

data, we don’t know which loci influence phenotypes (true positives) and which loci



don't influence phenotypes (true negatives). We only know which loci were previously

linked to these phenotypes. The outcomes of these previous studies will have false

negatives and positives compared to ground truth. We found that 93% (551/591) of all

previously identified loci have measures in the top 90th percentile of variable

importance, demonstrating that variable importance recapitulates previous genetic

linkage analysis and is helpful in identifying genes influencing phenotypes.

Given that we can use variable importance to identify loci-influencing phenotypes, we

were interested to see how this measure compares to the predicted additive influence

of these loci on phenotypes (Figure 7, C). One possibility is that a given locus's variable

importance and additive and independent contribution to a single phenotype are

highly correlated. Such a result would be consistent with the idea that these loci

influence individual phenotypes primarily through additive effects. Alternatively, these

loci could act through nonlinear influences mediated by other loci and could

contribute to more than one phenotype. G–P Atlas could capture such influences, but

they wouldn't be present in the predicted additive genetic influence on one phenotype.

While we find a significant correlation between variable importance and additive

influence (Pearson's correlation of 0.47, p < 0.002), there are many loci with high

variable importance and low additive influence and others with high additive influence

and low variable importance, suggesting that these loci may have both additive and

non-additive or non-independent effects, potentially on multiple phenotypes. The loci

with high variable importance and low additive influence may be particularly interesting

as they're potentially loci that are important for biology but weren't previously identified

using conventional methods. Together, these results suggest that G–P Atlas and this

approach to quantifying variable importance are exceptionally capable of identifying

genes contributing to a set of phenotypes while agnostic to the mechanism by which

they contribute.



Continuity of latent representations

For both simulated and real phenotypes, the learned latent

representations are reasonably continuous.

(A) Latent embeddings for simulated phenotypes.

(B) Latent embeddings for phenotypes from a yeast hybrid

population.

Data points are individuals. 32-dimensional latent

representations are projected into two-dimensional space

using t-distributed stochastic neighboring embedding.

The continuity of latent representations learned by G–P Atlas has profound

implications for both modeling and biological understanding. While standard

autoencoders often produce discontinuous representations with significant gaps [47],

our denoising approach naturally yields continuous latent spaces without requiring

explicit constraints like those in variational autoencoders [26]. This emergent

continuity reflects fundamental biological principles: phenotypic traits exist along

continua shaped by genetic, developmental, and evolutionary constraints [48][49].

Such continuous representations enable not only more accurate interpolation

between observed biological states but also potential generative applications, allowing

simulation of novel phenotypes that respect biological constraints [50]. The continuity

we observe in both simulated (Figure 8, A) and experimental yeast data (Figure 8, B)

Figure 8



suggests that G–P Atlas captures the underlying manifold structure of biological

variation, a property that could prove invaluable for predicting phenotypic outcomes of

genetic interventions or evolutionary trajectories [51].

Key takeaways
For nearly a century, genetic mapping has relied on analyzing individual traits and

assuming simple additive relationships between genes and phenotypes. G–P Atlas

fundamentally reimagines this approach by modeling an organism's genetic

architecture more holistically. Our neural network framework captures what biologists

have long understood — that genes interact with each other in complex ways and

phenotypes are interconnected through shared biological processes.

The advantages of G–P Atlas are substantial and practical. G–P Atlas identifies genes

influencing phenotypes that conventional methods may not find, particularly those

acting through gene–gene interactions. In different contexts, these newly identified

genetic influences represent potential therapeutic targets, breeding markers, or

handles for mechanistically studying new biology.

G–P Atlas offers a path toward more realistic modeling of entire living systems by

modeling many phenotypes simultaneously. It brings us closer to a comprehensive,

predictive understanding of how genotypes give rise to phenotypes.

The transition from reductionist to holistic modeling of genetic architecture represents

a shift in how we capture biological complexity. As we release our framework and code

openly to the scientific community, we encourage researchers to apply and build upon

G–P Atlas in their own studies of complex traits. We hope you’ll develop even more

comprehensive frameworks that further bridge the gap between genotype and

phenotype.

Additional methods
We used Claude to suggest wording ideas and then choose which small phrases or

sentence structure ideas to use, to help clarify and streamline text that we wrote, to

produce draft text that we later edited, to help write code, and to clean up code. We

used ChatGPT and GitHub Copilot to clean up code.



Next steps

Biological framework improvements

While this modeling framework captures known biological phenomena not typically

leveraged by other approaches, several obvious extensions would capture even more

biology.

For example, in this framework, we treat all alleles independently, even though we know

that alleles in the same nucleotide position are mutually exclusive and thus contain

significant information about each other. We could incorporate this information with an

initial layer that convolves alleles at the same nucleotide position. Additionally, we don't

incorporate information like genetic linkage among loci, which is often known. Within a

population, there will be linkage among loci that are physically proximal to one another.

As a result, linked loci contain information about each other. It would be possible to

more efficiently encode genetic information by convolving an individual locus with data

from genetically proximal loci. We could incorporate linkage by instantiating an initial

graph convolutional layer representing genetic markers wherein edge weights are

proportional to the genetic distance between markers, allowing convolution among

loci based on their genetic distance.

Furthermore, we’ve not yet attempted to capture or control for genetic population

structure. So far, we’ve tested this framework on simulated data with no historical

population structure and a yeast population that's the first generation of a single cross

(haploid; first filial, F1; population). However, many populations (e.g., humans) have long

breeding histories that cause non-independent allele frequencies due to factors such

as country of origin. It's common to account for these relationships in linkage studies

or to leverage them to identify populations. In our framework, we could use a second

autoencoder that compresses the genetic data into a lower-dimensional space, as we

did here for phenotypes. Indeed, other researchers have already used a similar

approach to identify population classes for individuals [22].



Machine learning improvements

The artificial neural network architecture we use here is relatively simple compared to

many recent advancements in the field, including diffusion and modern attention

mechanisms. Employing some of these new approaches will likely improve the

accuracy or data efficiency of G–P Atlas. In particular, to provide data efficiency, we

limit the bandwidth of the mapping between genetic data and the phenotypic latent

space. An alternative approach that's become increasingly common is to use a sparse

autoencoder [32]. These are structured similarly to conventional autoencoders, but a

reduced bandwidth limit in the latent representation and the information bottleneck is

imposed through a penalty on complexity during training. Such an approach could

help capture even more relationships among genetic loci.

Expanded application

Beyond these improvements, we hope to apply this general approach to many more

datasets and adapt the framework appropriately. For example, all the data presented

here are continuous phenotypes, but many phenotypes of interest (e.g., diagnosed

disease state) are categorical. We aim to extend the framework to enable continuous

and categorical phenotype analysis simultaneously. Furthermore, we'd like to add the

ability to input environmental measurements (both continuous and categorical) at the

genotype-to-phenotype mapping step. Such expansions would allow ready application

to large datasets of human genetic information.

Identifying interactions

While we’ve demonstrated that G–P Atlas can capture non-additive genetic influences

on phenotypes and we can use variable importance to identify which loci impact

phenotypes, we didn’t explore our ability to identify gene–gene, gene–environment, or

allele–allele interactions. We'll investigate this possibility in forthcoming work.



Generative modeling of whole organisms

At the limit, a model that captures the mapping between all drivers of organismal

variation (i.e., genotype and environment) to all phenotypes that vary in a population

should produce a generative model capable of creating novel organisms consistent

with those from the modeled group. This approach is common in modern deep neural

networks for generating language or images based on a prompt [25][52].

Furthermore, as with models for images and language, interrogation of the structure of

that generative model may provide insight into the shared biological processes that

create an organism [53][54]. G–P Atlas represents a first step toward a

comprehensive generative model for an organism.
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