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Exploring the actin family:
A case study for
ProteinCartography

We've applied ProteinCartography, a tool for protein family

exploration, to the well-studied actin family. We’re able to categorize

actins and related proteins into distinguishable functional buckets,

and we uncovered some surprising hypotheses that could prompt

further study.

Contributors (A-Z)

Prachee Avasthi, Brae M. Bigge, Feridun Mert Celebi, Megan L. Hochstrasser,

Taylor Reiter, Dennis A. Sun, Ryan York

Version 2 ·  Mar 31, 2025

Purpose

We recently introduced ProteinCartography, a tool for interactively exploring protein

families across species using protein structural comparisons. As an early use case, we

chose to investigate a well-known protein family to test the ProteinCartography

clustering approach while seeing if we could generate new insights. We selected actin,

a cytoskeletal protein present in all eukaryotes and many prokaryotes, which is

responsible for many cellular functions, including maintaining cell shape, cell division,

cell motility, membrane dynamics, chromatin regulation, and others. Individual species
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Background and goals
We designed the ProteinCartography pipeline to explore protein families based on the

structure of each individual protein [2]. Briefly, ProteinCartography starts by generating

a list of protein structures using sequence- and structure-based searches. It then

compares every structure to every other structure in the list, creating a similarity matrix

for clustering and mapping. We used it to analyze a few dozen proteins in our initial

pub, but we wondered if we could identify shared structural features related to known

protein subfunctions and infer new properties of various subfamilies [2].

depend on their actin cytoskeleton to accomplish different cellular functions, so this

protein family is a good test case for inferring structure-function relationships.

We found that ProteinCartography clustering separates actin proteins into subfamilies

as expected, but we were also able to generate a list of novel observations and

hypotheses about how these actin proteins are related structurally and perhaps

functionally. We decided to follow up on one observation, that secondary actins from

fungi sort into a unique subfamily based on structure [1]. We don’t plan to follow up on

the remaining hypotheses listed here and there may still be more insights hiding within

the data. Therefore, if you find a hypothesis or piece of data particularly interesting or

compelling, we encourage you to dig deeper.

This pub is part of the platform effort, “Annotation: ​​Mapping the functional landscape

of protein families across biology.” Visit the platform narrative for more background

and context.

Data from this pub, including the full ProteinCartography analysis and results for the

actin family including structures, interactive maps, and all associated tables, can be

found on Zenodo.

All associated code is available in this GitHub repository.

The ProteinCartography pipeline can be found in this GitHub repository.

We used previously generated data from the 2022-actin-prediction GitHub

repository.

https://research.arcadiascience.com/annotation
https://research.arcadiascience.com/annotation
https://zenodo.org/records/10641662
https://github.com/Arcadia-Science/2023-actin-embedding/tree/main
https://github.com/Arcadia-Science/ProteinCartography
https://github.com/Arcadia-Science/2022-actin-prediction
https://github.com/Arcadia-Science/2022-actin-prediction


We previously utilized the actin family for similar protein-based comparative analyses

[3]. We selected actin because it’s important for many distinct cellular functions,

including maintaining cell shape, cell motility, cell division, intracellular trafficking,

signaling, organellar regulation, membrane remodeling, and many others [4].

Additionally, it’s been studied enough that we know quite a bit about its structure and

function. For example, we know that actin monomers must associate and form long

filaments for many of its broader functions in the cell, and we know that actin functions

as an ATPase [4]. We even know the critical residues for these important functions

from experimentally determined structures and biochemical studies [5]. Here, we

investigated how conservation of these known residues is distributed across the

family, and also asked if other unique structural features contribute to the division of

the actin family into subfamilies. Our results point to novel structure-function

relationships within this well-known family. To see what we found, skip straight to “The

results” or continue reading to learn more about our methodology.

SHOW ME THE DATA: Access our clustering data on Zenodo (DOI:

10.5281/zenodo.10641662)

The approach

Preparing the list of proteins

We used actin family proteins previously identified with our actin prediction pipeline

[3]. In that analysis, we used human β-actin (UniProt ID: P60709) to perform a protein

BLAST search against the full NCBI non-redundant (nr) database with no taxonomic

restrictions, retrieving 50,000 proteins [6][7], 26,994 of which were available on

UniProt. We removed proteins from this list based on their annotation as “fragment”

proteins or as “deleted” proteins and downloaded the remaining available proteins

from the AlphaFold database [8][9]. This resulted in 14,665 actin family protein

structures that we analyzed in this study.

https://zenodo.org/records/10641662
https://doi.org/10.5281/zenodo.10641662
https://www.uniprot.org/uniprotkb/P60709/entry


You can find a full description of how we prepared this set of protein sequences

in this GitHub repository.

Running ProteinCartography Cluster mode

Using the prepared protein structures as input, we ran the ProteinCartography pipeline

using “Cluster mode” and the default parameters of the pipeline [2].

ProteinCartography’s “Cluster mode” starts with a prepared folder of protein

structures. It uses Foldseek to compare proteins and create an all-v-all similarity

matrix of TM-scores [10][11]. TM-scores are values that tell you how related two protein

structures are on a scale of 0–1, where values closer to one are more similar [12]. The

matrix is then used to cluster the proteins into groups of similar proteins using Leiden

clustering [13] and to create interactive maps of the comparisons. Various data can be

intersected with the maps to help deeply investigate the protein family.

This is outlined in detail in the ProteinCartography GitHub repository.

Combining results of ProteinCartography and

the actin prediction pipeline

In addition to the standard overlays in ProteinCartography, users can apply custom

overlays to the interactive maps. In this analysis, we used data from our prior work [3]

to create a custom overlay to add to the plot. In particular, we overlaid the conservation

of residues involved in actin polymerization and ATP binding. Additionally, we visualized

and statistically analyzed the distributions of some of the metadata. This is outlined in

three repositories:

We describe how we calculated the conservation of important functional residues

and built the initial list of proteins in this GitHub repo.

We created the maps using ProteinCartography, which you can find in this GitHub

repo.

https://github.com/Arcadia-Science/2023-actin-embedding/tree/main
https://github.com/Arcadia-Science/ProteinCartography
https://github.com/Arcadia-Science/2022-actin-prediction
https://github.com/Arcadia-Science/ProteinCartography
https://github.com/Arcadia-Science/ProteinCartography


We outline how we prepared files, downloaded structures, and performed additional

analyses in this GitHub repo.

Additional methods

We used GitHub Copilot to help write, clean up, and comment our code. We also used

ChatGPT to help write some code. We validated all AI-generated code by running

known datasets through it.

https://github.com/Arcadia-Science/2023-actin-embedding/tree/main


The results

Distinct clustering of high-quality protein

structures allows for exploration of the actin



family

Clustering of the actin family produced well-defined clusters

of high-quality proteins.

(A) Cross-cluster similarity matrix. The four-pointed star shows the

cluster that contains the input. Other clusters highlighted in this

figure are indicated with an asterisk.

(B) The UMAP of actin and related proteins showing Leiden clusters.

(C) The UMAP of actin and related proteins showing mean pLDDT of

each protein.

(D) The UMAP of actin and related proteins showing the TM-score

of each protein compared to the input.

(E) Zoomed-in version of LC05, where the input protein can be

found (represented by the star).

Figure 1



We’ve also featured LC01 (F), LC15 (G), LC16 (H), and LC17 (I).

After running ProteinCartography, we see proteins sort into 23 (LC00–LC22) distinct

clusters. Our input protein, human β-actin, is in cluster LC05 (Figure 1 and Figure 2). A

full list of all the proteins in this analysis along with all the aggregated information from

the pipeline can be found in the aggregated features file linked below.

actin_aggregated_features.tsv Downloadtsv

https://www.uniprot.org/uniprotkb/P60709/entry
https://assets.pubpub.org/bje02855/actin_aggregated_features-51707760603732.tsv


LC00 LC01 LC02 LC03 LC04 LC05

LC09 LC10 LC11 LC12 LC13 LC14

LC18 LC19 LC20 LC21 LC22

color Leiden Cluster ▼

Interactive UMAP plot with metadata overlays.

This is the UMAP generated via ProteinCartography

“cluster mode” for actin. Our input protein, human β-actin,

is in cluster LC05 and is highlighted with a four-pointed

star, which can be toggled on and off with the “Input

Proteins” button. You can change the overlay using the

Figure 2



“color” drop-down menu. A static version of this graph is

available in Figure 1, B.

Before diving into exploring the clusters, we first evaluate cluster quality using the

cross-cluster similarity matrix (Figure 1, A and Figure 3). ProteinCartography calculates

a mean TM-score for each cluster versus every other cluster and plots these scores in

a visual matrix [2]. The diagonal of the matrix shows how similar the proteins within

each cluster are to each other, a measure we refer to as “cluster compactness.” For

this analysis, we observe high cluster compactness, as visualized by higher average

TM-score values along a clear diagonal, suggesting that the clusters are distinct

(Figure 1, A and Figure 3). In particular, Leiden clusters 19 (LC19) and 20 (LC20) seem to

be particularly compact (Figure 1, B and Figure 2). Clusters LC12 and LC15 seem to be

compact as well, but to a lesser extent (Figure 1, B; Figure 2; and Figure 3). We can also

see that cluster pair LC20/LC12 and cluster pair LC06/LC19 show a high mean TM-

score, suggesting the clusters are structurally similar, leading us to hypothesize that

they could share some functions (Figure 1, A and Figure 3). Of note, our input protein

(human ß-actin) is present in LC05, which shares some similarity with LC00, LC01, and

LC03 (Figure 1, A; Figure 2; and Figure 3).



LC
00

LC
01

LC
02

LC
03

LC
04

LC
05

LC
06

LC
07

LC
08

LC
09

LC
10

LC
11

LC
12

LC
13

LC
14

LC
15

LC
16

LC22

LC21

LC20

LC19

LC18

LC17

LC16

LC15

LC14

LC13

LC12

LC11

LC10

LC09

LC08

LC07

LC06

LC05

LC04

LC03

LC02

LC01

LC00

target

qu
er
y

Cross-cluster similarity matrix for the actin family

shows distinct and compact clusters.

The similarity matrix shows the mean TM-score of each

structure within each cluster versus all other proteins in all

other clusters. The diagonal line shows how similar

proteins within a cluster are to each other, and thus how

compact the clusters are. The input protein is in cluster

LC05. You can view a static version of this matrix in Figure

1, A.

Figure 3



Looking at the clusters themselves and applying additional overlays can tell us about

the quality of the protein structures within the space (Figure 1, B and Figure 2). The

“pLDDT” (predicted local distance difference test) is a per residue score that tells us

about the quality of the structure prediction [14]. The pipeline averages this value

across each predicted structure and displays it as an overlay. Cluster LC05, which

contains the input protein, has a high pLDDT (mean is 93.6%), with all other clusters

having statistically lower average pLDDT scores (Figure 1, C; Figure 1, E; Figure 2; and

Figure 4, A). AlphaFold suggests guidelines for interpreting these scores — pLDDT

scores greater than 90 suggest high confidence, and scores between 70 and 90 are

modeled well. All the cluster averages fall within this range (Figure 4, A), but there are a

handful of proteins that appear to have lower-quality predictions looking at the pLDDT

overlay (Figure 1, C; Figure 1, F; Figure 2; and Figure 4, A). Overall, however, most

proteins in this analysis are well-structured and well-predicted according to the pLDDT

scores.

Knowing that the analysis yielded compact and distinct clusters of high-quality protein

structures, we can now dive deeper into what the analysis might tell us about the

structure-function relationship throughout this protein family.



Distributions of metadata.

We’ve plotted the distribution of mean pLDDT (A), length (B), fraction

sequence identity compared to input (C), and important functional

residue conservation for each cluster (D–G). We performed a Mann–

Whitney U test to statistically compare each cluster to the cluster

containing the input protein (LC05). Gray arrows pointing down

represent clusters where the distribution is statistically lower than

the input cluster, and black arrows pointing up represent clusters

where the distribution is statistically higher than the input cluster.

The placement of either an arrow or a dot shows the mean of each

distribution.

Taxonomy, length, and annotation score

overlays provide functional insights

To help us understand more about the proteins in this analysis, we applied an

annotation score overlay. The annotation score overlay tells us how confident the

existing UniProt annotations are. UniProt annotations with a score of five mean the

Figure 4



protein annotations are experimentally determined, while a score of one is a lower-

confidence annotation. In this analysis, 13,668 proteins out of the total 14,608 (about

94%) have annotation scores of one, while only 64 proteins have annotation scores of

five. 22 of those proteins (34%) were grouped in LC05, where our input protein is

found, while only 6% of all proteins were in LC05 and no other cluster had as many

proteins with annotation scores of five (Figure 2; Figure 5 B; and Figure 5 E). Therefore,

despite this being a well-studied family, the majority of protein annotations are low-

confidence predictions, leaving plenty of room for discovery.



Overlays indicate patterns that could drive clustering.

(A) The UMAP of actin and related proteins showing Leiden clusters.

(B) The UMAP of actin and related proteins showing the UniProt

annotation score of each protein.

(C) The UMAP of actin and related proteins showing the broad taxon

into which each protein was sorted.

(D) The UMAP of actin and related proteins showing the length.

(E) Zoomed-in version of LC05 where the input protein can be found

(represented by the star).

We also featured LC01 (F), LC15 (G), LC16 (H), and LC17 (I).

We can apply additional overlays, like the broad taxonomy of the proteins (Figure 2 and

Figure 5, B). We assigned the broad taxa into which ProteinCartography sorts proteins

to make interpreting the plots easier, but it’s important to note that the taxonomic

Figure 5



depth isn’t uniform. We know that actin is widely expressed, particularly in eukaryotes,

and we see that the taxonomic origins of actin proteins in the map are generally quite

mixed. We mostly see eukaryotes, but there is a smattering of bacterial and archaeal

proteins throughout the space.

While the overall map is taxonomically mixed, some regions are primarily composed of

organisms from a single broad taxonomic group. For example, clusters LC13, LC14,

LC15, LC16 and LC20 contain mostly fungal species (Figure 2; Figure 5, C; and Figure 5,

G). Meanwhile, clusters LC02, LC17, and LC22 contain mostly proteins from plants

(Figure 2; Figure 5, C; and Figure 5, I). We expect structures to vary with phylogeny, but

we’re interested in better understanding the clustering differences we see between

taxonomic groups and how these might relate to protein structure and function. For

example, the clustering we see in Figure 5, C suggests there may be specific

structural/functional features that separate fungal and plant proteins from other similar

proteins, so this could be a useful place for us to start.

In addition to looking at the taxonomy of proteins throughout the space, we can also

look at features of the proteins, like length. We filtered out proteins annotated as

fragments on UniProt in our analysis, but because we know the length of most actins —

375 amino acids — we can use the length to tell us when proteins are surprisingly long

or short compared to what we consider “normal” [4][7]. Some proteins are much

longer than the conserved 375 amino acids (up to 1279 residues), and clusters LC11

and LC18 contain many proteins that are shorter than 375 amino acids (with the

shortest just 60 amino acids long) (Figure 2; Figure 4, B; Figure 5, D; and Figure 5, F). To

perform cellular functions, individual actin molecules bind together to form filaments

with structures that are generally quite well-conserved across isoforms and species.

Differences in monomer length could affect the structure and dynamics of those

filaments in “true” actins. Additionally, because this analysis contains actin-related

proteins in addition to true actins, these long or short proteins could have totally

distinct functions, which we’ll discuss more in the next section.

Existing annotations align with

ProteinCartography clustering

Because the actin family is extensively studied, most proteins are assigned some

annotation in UniProt. The actin family is composed of several smaller subfamilies,



including “actins,” but also several distinct “actin-related proteins” and some “actin-

like proteins.” Together, this means that we can use these annotations to determine

how well our clustering aligns with existing information and to generate hypotheses

about why certain proteins are clustered together. In general, we found that the

existing annotations do align well with the clustering results. However, we also found

evidence that existing annotations are not always reliable.

We see several clusters, including LC00, LC01, LC02, LC03, and LC05, that contain

mostly proteins annotated as “actin” or a similar variation (Figure 6). This group of

clusters contains almost all primary eukaryotic actins, including our input protein,

human β-actin, which is in LC05. Surprisingly, Giardia actin, the most divergent actin

currently studied with a sequence identity of less than 60% compared to human actin,

can be found in LC03 along with many conventional actins (Figure 6) [15][16]. Despite

the sequence divergence, this unusual actin shares enough of its structure with other

actins to still be considered an actin, and therefore, likely has similar functions to

“normal” actins. However, it is interesting that the “true” actins are sorted into separate

clusters, as opposed to a single, large cluster. Evaluating some of the underlying

structural and functional differences that result in this separation could lead to a better

understanding of actin evolution across species.



Semantic analysis of the actin family shows that protein

clustering generally agrees with existing annotations but that

existing annotations are not always reliable.

(A) The map of the actin family showing Leiden clusters.

(B) The map of actin proteins with the top annotation from each

cluster represented in the color overlay. Different hues of each color

are to help discriminate between individual clusters.

C) Colors correspond to Leiden cluster color. Each cluster has a

ranked bar chart that shows its top ten full annotation strings, as

well as a word cloud that shows top annotation words.

LC19 is composed of “centractins,” “actin-related protein 1,” or “Arp1” (Figure 6). Arp1 is

a subunit of the dynactin complex, which binds microtubules and dynein [17]. Dynactin,

and thus Arp1, is involved in intracellular transport, nuclear positioning, and

chromosome movement. In the dynactin complex, Arp1 forms a short filament that

never achieves the length of conventional actin filaments [18]. Within this single Arp1

cluster, there are many proteins annotated as “hypothetical proteins” or “proteins of

unknown function.” We hypothesize that these unannotated proteins could be Arp1s.

Figure 6



There are also Arp1 proteins in LC06 and LC14 that could have differing functions from

those in LC19.

We also see a few distinct clusters — LC07, LC09, and LC21 — annotated as “actin-

related protein 2” or “Arp2” (Figure 6). Similarly, we see distinct clusters, LC12, LC13,

LC17, and LC20, annotated as “actin-related protein 3” or “Arp3” (Figure 6). Arp2 and

Arp3 are members of the Arp2/3 complex, which binds to primary actin filaments and

nucleates new filaments in a characteristic branch [19]. Arp2 and Arp3 serve as the

first monomers in the new actin filaments, but are unable to form stable filaments on

their own [20][21]. Interestingly, both Arp2 and Arp3 subfamilies are broken up into

clusters with a cluster or two that are primarily composed of proteins from a single

taxonomic group, while other clusters are more homogenous. In the case of Arp2,

LC09 and LC21 contain more fungal proteins, while the majority of LC07 consists of

metazoan proteins (Figure 5, C and Figure 6). For Arp3, this distinction is even more

apparent — LC20 contains mostly fungal proteins, LC13 contains mostly metazoan

proteins, and LC17 contains primarily plant proteins (Figure 5, C; Figure 5, I; and Figure

6). One could investigate why these subfamilies are broken up into smaller clusters.

Could there be structural or functional differences between the Arp2s or Arp3s in

specific clusters? One could also use this dataset to investigate co-evolution of

proteins that function together. Specifically, Arp2 and Arp3 form a complex that binds

actin. Using the information from this analysis, one could determine whether these two

proteins evolved together by checking whether Arp2 and Arp3 from individual species

cluster together.

LC04 and LC14 are annotated as “actin-related protein 4” or “Arp4” and LC10, LC16,

and LC22 are annotated as “actin-related protein 6” or “Arp6.” Arp4 and Arp6 are most

known for their nuclear roles. Arp4 prevents polymerization of actin within the nucleus

and regulates gene expression, among other things [22][23][24]). Arp6 is involved in

maintenance of the nucleolus and regulation of transcription [25]. As with Arp2 and

Arp3, we also see these subfamilies broken up into clusters where LC04 and LC10 are

quite mixed but LC14 and LC16 are composed mostly of proteins from fungi and LC22

is almost completely proteins from plants (Figure 5, C and Figure 6). The pipeline could

be separating proteins based on structural differences that one might expect based

on phylogeny, but further investigation could determine if these differences are

explained by phylogenetic differences alone or if Arp4 and Arp6 proteins from different

taxa have more extreme structural differences that lead to differences in overall

function.



Finally, there are “actin-like proteins” in many clusters, but we found one cluster

composed primarily of actin-like proteins or secondary actins (“Actin-2,” “Actin II,” etc.)

— LC15 (Figure 6). We found this particularly interesting because of LC15's very clean

separation from clusters of actins, with an average within-cluster TM-score of about

0.86, strongly suggesting the structures in this cluster are unique, which could indicate

a functional distinction between these actin-like proteins and true actins (Figure 6).

Looking more closely, LC15 is nearly 100% fungal proteins (Figure 5, C and Figure 5, G).

To our knowledge, these secondary actins or actin-like proteins from fungi have not

previously been explored and further analysis could provide insight into actin biology

and fungal biology.

In summary, we found that all clusters contained a highly represented annotation that

corresponds to a specific actin subfamily. Additionally, we found that most actin

subfamilies were represented in only a handful of clusters. This suggests that

ProteinCartography clustering can distinguish specific subfamilies, which in this

protein family have differing functions.

However, despite the usefulness of the existing annotations for checking the reliability

of our clustering approach, we also found that existing annotations are themselves not

always reliable. Clusters have distinct annotations that are more highly represented

than other annotations, but nearly every cluster still contains proteins annotated as

simply “actin” or some variation. This suggests that “actin” is often applied as an

annotation for proteins across this large, functionally diverse family. Additionally, we

saw proteins annotated as “actin family” or “actin-like” across many clusters, and even

in this well-known family, there are many proteins annotated as “uncharacterized

protein” or “hypothetical protein.” This suggests that this type of analysis could be

broadly useful for generating hypotheses about protein families, even those that are

already very well-studied.

Mapping conservation of important functional

residues helps identify novel drivers of

clustering

To gain more information about the space, ProteinCartography lets users create

custom overlays using metadata gathered from elsewhere or analyses performed

outside the pipeline. For actin, we previously ran an analysis to determine the



conservation of residues involved in actin’s key biochemical functions, which are

essential for the protein to perform its many roles in the cell [4][3][5].

Actin can exist in two primary states: single actin monomers (monomeric actin) or actin

monomers strung together into filaments (filamentous actin). The process whereby

actin switches between these states is termed polymerization or depolymerization,

and is essential for actin’s many functions. Actin polymerizes when monomers bind to

each other through lateral contacts and longitudinal contacts [5]. This process also

requires that actin bind and hydrolyze ATP. Because actin is so well-studied, the

specific regions of the protein involved in lateral contacts, longitudinal contacts, and

ATP binding are known. Therefore, we looked for the conservation of these residues in

each of our proteins, as we previously detailed [3].

We used the information generated from that analysis to create a custom overlay so

we could observe how the conservation of those important residues is distributed

across the actin maps generated by ProteinCartography (Figure 7).



Overlaying additional information on the map can help inform

functional predictions.

(A) Structure of actin with the regions required for ATP binding and

polymerization (lateral and longitudinal) contacts highlighted

visualized using open-source PyMOL.

(B) Maps of the actin family showing where ATP-binding residues

and polymerization contacts are more or less conserved.

(C) LC05, which contains the input protein, has high ATP-binding

residue and polymerization contact conservation.

(D) LC14 has low ATP-binding residue and polymerization contact

conservation.

(E) LC15 has high ATP-binding residue conservation and low

polymerization contact conservation.

Figure 7



We found that overall, the clusters that contain “true” actins have higher conservation

of ATP-binding residues, lateral contacts, and longitudinal contacts than the rest of the

space (Figure 7, B). Additionally, ATP-binding residues seem to be much more

conserved throughout than lateral or longitudinal contact sites (Figure 7, B). This is

expected based on the biology, as even actin-related proteins can bind ATP. However,

clusters LC04 and LC14, which primarily contain Arp4s, and LC10, LC16, and LC22,

which primarily contain Arp6s appear to have a less conserved ATP-binding site

(Figure 7, B and Figure 7, D). This could suggest that their ATP-binding kinetics or

specific functions differ from “true actins.”

When we look closer at particular clusters — for example, LC15, which contains

primarily secondary actins from fungi — we see that while ATP-binding contacts seem

to be fairly well-conserved, both lateral and longitudinal contacts are not (Figure 7, B

and Figure 7, E). This could further suggest functional differences between these

secondary actins and the conventional actins in LC05. Specifically, we could

hypothesize that proteins in this cluster are able to bind ATP but have distinct

polymerization kinetics.

All code generated and used for the pub is available in this GitHub repository

(DOI: 10.5281/zenodo.10642492), including notebooks used for preparing data,

obtaining structures, and plotting the data.

ProteinCartography analysis of the actin family

generates novel hypotheses

While using actin to learn about ProteinCartography, we generated a number of

interesting hypotheses about the actin family itself. For example, we were particularly

interested in LC15, the cluster of secondary actins or actin-like proteins that contains

almost exclusively proteins from fungi. Because this group of proteins had not been

previously characterized, we decided to dive deeper into this analysis in a separate

pilot study. In that pilot, we tried to elucidate the functions of these secondary fungal

actins using additional ProteinCartography analysis along with phylogenetic analysis

and trait mapping [1].

https://github.com/Arcadia-Science/2023-actin-embedding/tree/main
https://doi.org/10.5281/zenodo.10642492


In addition, we have several hypotheses that we don’t plan to investigate. We’d love for

readers to dive deeper into these hypotheses and any others that they find in this data

if they’re interested:

First, there are many uncharacterized proteins throughout the clusters that

researchers interested in the cytoskeletons of their organisms of interest might want

to study. This type of analysis could even potentially be used for annotation transfer

via structural comparison. For example, LC19, which contains primarily Arp1s or

centractins, contains 27 uncharacterized proteins (about 10% of the total cluster).

Perhaps some of these uncharacterized proteins have Arp1-related functions.

Similar hypotheses could be drawn for each cluster.

How does the overall variation in length throughout the proteins in the map

correspond to functional differences?

What are the factors in our “true” actin clusters that are causing them to sort into a

handful of different clusters? The actins in LC00, LC01, LC02, LC03, and LC05 are

primarily annotated as “actin,” and we found that most actins we looked for, including

the very divergent Giardia actin, sorted into one of these four clusters. It could be

interesting to see if there are more subtle differences between actins that are

causing the further division of true actins into these clusters. Additionally, it could be

interesting to look at the consequences of those more subtle differences — are

there differences in actin dynamics or actin-binding proteins in these species?

The division of Arp2s and Arp3s into distinct clusters could suggest functional

differences between the branched actin nucleating Arp2/3 complexes of certain

species. Specifically, we see that fungal proteins seem to cluster separately from

others — could fungi have Arp2/3 complexes that perform functions different from

other Arp2/3 complexes? One way to approach this could involve investigating the

structural relationships of the other members of the Arp2/3 complex. As mentioned

above, this could also provide an opportunity to study co-evolution — do Arp2s and

Arp3s similarly cluster or not?

Similarly, we see division of Arp4s and Arp6s into distinct clusters within each

subfamily. Could there be functional differences between these clusters that cause

them to fall into different clusters based on their structures? Additionally, these

clusters have lower conservation of the residues involved in ATP binding. Could

Arp4s and Arp6s have different specific functions or dynamics of ATP binding?



LC06 and LC08 contain proteins annotated as “actin-related protein 7” or “Arp7”

and “actin-related protein 8” or “Arp8.” This cluster also contains many proteins

annotated as “F-box domain-containing protein.” This is a unique domain that has

mostly only been investigated in plants [26]. The top taxon in this cluster is plants,

but there are other taxonomic groups represented as well. It could be interesting to

investigate whether this domain is more widespread and what function it serves

outside of plants.

Finally, while we’ve thoroughly investigated the conservation of residues that are

known to be important for actin function, there is still room to determine if there are

other important conserved residues that help make an actin an actin.

If you use these data, please let us know in a comment on this pub! We’d love to know

how you’re using hypotheses generated via the ProteinCartography pipeline.

Key takeaways
In addition to the generation of hypotheses related to the actin family, this analysis also

helped us better understand the pipeline’s performance. Based on these results, we

plan to continue using this family as a standard dataset for future development and

testing of the pipeline. We found:

ProteinCartography was able to separate primary actins from actin-related and

actin-like proteins. Specifically, we found clusters for actin, ARP1, ARP2, ARP3, ARP4,

and ARP6.

Existing annotations are not always reliable, as nearly every cluster contained some

variation of “actin” as a common annotation.

ProteinCartography is useful for generating new hypotheses even for this well-known

protein family.

In the future, we want to add tools to the ProteinCartography pipeline that automate

some of the analyses used in this pub, such as highlighting important functional

residue conservation across the space and providing distributions of protein features

across clusters, as in Figure 4.

Please let us know if you apply the ProteinCartography pipeline for other uses. The

pipeline is still in development, and we’re actively looking for ways to improve, so any

https://www.youtube.com/watch?v=f90SKxJOcRY


feedback is welcome and appreciated.

References
Avasthi P, Bigge BM, Kolb I, Mets DG, Morin M, Patton AH, York R. (2024). A

structurally divergent actin conserved in fungi has no association with specific

traits. https://doi.org/10.57844/ARCADIA-9768-F6C5

Avasthi P, Bigge BM, Celebi FM, Cheveralls K, Gehring J, McGeever E, Mishne G,

Radkov A, Sun DA. (2024). ProteinCartography: Comparing proteins with

structure-based maps for interactive exploration.

https://doi.org/10.57844/ARCADIA-A5A6-1068

Avasthi P, Bigge BM, Reiter T. (2024). Defining actin: Combining sequence,

structure, and functional analysis to propose useful boundaries.

https://doi.org/10.57844/ARCADIA-YNTH-KH70

Dominguez R, Holmes KC. (2011). Actin Structure and Function.

https://doi.org/10.1146/annurev-biophys-042910-155359

Chou SZ, Pollard TD. (2019). Mechanism of actin polymerization revealed by cryo-

EM structures of actin filaments with three different bound nucleotides.

https://doi.org/10.1073/pnas.1807028115

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden

TL. (2009). BLAST+: architecture and applications. https://doi.org/10.1186/1471-

2105-10-421

Consortium TU. (n.d.). UniProt: the Universal Protein Knowledgebase in 2023.

https://doi.org/10.1093/nar/gkac1052

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D,

Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S,

Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N,

Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. (2021). AlphaFold Protein

Structure Database: massively expanding the structural coverage of protein-

sequence space with high-accuracy models.

https://doi.org/10.1093/nar/gkab1061

1

2

3

4

5

6

7

8

https://doi.org/10.57844/ARCADIA-9768-F6C5
https://doi.org/10.57844/ARCADIA-A5A6-1068
https://doi.org/10.57844/ARCADIA-YNTH-KH70
https://doi.org/10.1146/annurev-biophys-042910-155359
https://doi.org/10.1073/pnas.1807028115
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkab1061


Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,

Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl

SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T,

Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M,

Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K,

Kohli P, Hassabis D. (2021). Highly accurate protein structure prediction with

AlphaFold. https://doi.org/10.1038/s41586-021-03819-2

Barrio-Hernandez I, Yeo J, Jänes J, Wein T, Varadi M, Velankar S, Beltrao P,

Steinegger M. (2023). Clustering predicted structures at the scale of the known

protein universe. https://doi.org/10.1101/2023.03.09.531927

van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J,

Steinegger M. (2022). Fast and accurate protein structure search with Foldseek.

https://doi.org/10.1101/2022.02.07.479398

Zhang Y, Skolnick J. (2004). Scoring function for automated assessment of

protein structure template quality. https://doi.org/10.1002/prot.20264

Traag VA, Waltman L, van Eck NJ. (2019). From Louvain to Leiden: guaranteeing

well-connected communities. https://doi.org/10.1038/s41598-019-41695-z

Mariani V, Biasini M, Barbato A, Schwede T. (2013). lDDT: a local superposition-

free score for comparing protein structures and models using distance

difference tests. https://doi.org/10.1093/bioinformatics/btt473

Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. (2021). Identification of

Actin Filament-Associated Proteins in Giardia lamblia.

https://doi.org/10.1128/spectrum.00558-21

Paredez AR, Nayeri A, Xu JW, Krtková J, Cande WZ. (2014). Identification of

Obscure yet Conserved Actin-Associated Proteins in Giardia lamblia.

https://doi.org/10.1128/ec.00041-14

Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA,

Robinson CV, Carter AP. (2015). The structure of the dynactin complex and its

interaction with dynein. https://doi.org/10.1126/science.aaa4080

Bingham JB, Schroer TA. (1999). Self-regulated polymerization of the actin-

related protein Arp1. https://doi.org/10.1016/s0960-9822(99)80095-5

Goley ED, Welch MD. (2006). The ARP2/3 complex: an actin nucleator comes of

age. https://doi.org/10.1038/nrm2026

Robinson RC, Turbedsky K, Kaiser DA, Marchand J-B, Higgs HN, Choe S, Pollard

TD. (2001). Crystal Structure of Arp2/3 Complex.

9

10

11

12

13

14

15

16

17

18

19

20

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1101/2023.03.09.531927
https://doi.org/10.1101/2022.02.07.479398
https://doi.org/10.1002/prot.20264
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1093/bioinformatics/btt473
https://doi.org/10.1128/spectrum.00558-21
https://doi.org/10.1128/ec.00041-14
https://doi.org/10.1126/science.aaa4080
https://doi.org/10.1016/s0960-9822(99)80095-5
https://doi.org/10.1038/nrm2026


https://doi.org/10.1126/science.1066333

Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD. (2001). Reconstitution

of Human Arp2/3 Complex Reveals Critical Roles of Individual Subunits in

Complex Structure and Activity. https://doi.org/10.1016/s1097-2765(01)00393-8

Nie W-F, Wang J. (2021). Actin-Related Protein 4 Interacts with PIE1 and

Regulates Gene Expression in Arabidopsis.

https://doi.org/10.3390/genes12040520

Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-

Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. (2022).

Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing.

https://doi.org/10.3390/cells11172754

Yamazaki S, Gerhold C, Yamamoto K, Ueno Y, Grosse R, Miyamoto K, Harata M.

(2020). The Actin-Family Protein Arp4 Is a Novel Suppressor for the Formation

and Functions of Nuclear F-Actin. https://doi.org/10.3390/cells9030758

Kitamura H, Matsumori H, Kalendova A, Hozak P, Goldberg IG, Nakao M, Saitoh

N, Harata M. (2015). The actin family protein ARP6 contributes to the structure

and the function of the nucleolus. https://doi.org/10.1016/j.bbrc.2015.07.005

Kandasamy MK, McKinney EC, Meagher RB. (2008). ACTIN-RELATED PROTEIN8

Encodes an F-Box Protein Localized to the Nucleolus in Arabidopsis.

https://doi.org/10.1093/pcp/pcn053

21

22

23

24

25

26

https://doi.org/10.1126/science.1066333
https://doi.org/10.1016/s1097-2765(01)00393-8
https://doi.org/10.3390/genes12040520
https://doi.org/10.3390/cells11172754
https://doi.org/10.3390/cells9030758
https://doi.org/10.1016/j.bbrc.2015.07.005
https://doi.org/10.1093/pcp/pcn053

