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A high-throughput
imaging approach to track
and quantify single-cell
swimming

Live imaging of swimming cells can yield insight into an organism’s

viability and responses to environmental stimuli. We developed a

microscopy workflow and image analysis pipeline, SwimTracker, to

track motility phenotypes from swimming cells in high throughput.
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Purpose

We need robust, high-throughput methods to observe and quantify biology across

species. Historically, quantitative measurement of single-cell motility, even at low

throughput, has proven challenging partly due to the difficulty of isolating cells [1]. We

previously addressed the issue of cell isolation using agar microchambers [2], an

effective but low-throughput method for observing long swimming trajectories of cells.

Here, we develop a new single-cell motility data acquisition and analysis workflow

(SwimTracker) that increases the throughput and versatility of our previous sample
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The strategy
We're using microscopy to capture phenotypes at high throughput. In this work, we

focus on motility, an evolutionarily conserved, information-rich readout impacted by

many biological processes, including life stage, metabolism, and physical and sensory

interactions with the environment [3][4][5]. Motility is common to multicellular and

unicellular organisms [6][7] and takes diverse forms (e.g., walking, jumping, gliding,

crawling, etc.). We’re focused on motility in liquid (swimming), a form of movement

common to many protists, an evolutionarily diverse and under-characterized

preparation approach (microchambers), and we demonstrate its application to more

sample preparation methods (e.g., swimming in microtiter plates). We show that this

approach enables robust quantitative readouts of motility even without isolating single

cells.

We developed this strategy by 1) scaling image acquisition using the automation

capabilities of our commercial microscope software, 2) directly comparing two types

of vessels (agar microchambers and 384-well microtiter plates) to increase the

flexibility of the assay, and 3) streamlining and automating the cell tracking and

statistical analyses to make the assay robust and high-throughput.

This resource should be helpful for researchers studying motility in unicellular and

small multicellular organisms. Our approach allows for extremely high throughput

analysis of single-cell motility data (10s of thousands of cells) even without isolating

single cells.

This pub is part of the platform effort, “Microscopy: Visually interrogating the

natural world.” Visit the platform narrative for more background and context.

All associated code for tracking cell trajectories, calculating motility metrics, and

conducting statistical analysis (the SwimTracker pipeline) is available in this GitHub

repository.

All data, including the raw time-lapse microscopy data and computed cell

trajectories, is available via the BioImage Archive.

https://research.arcadiascience.com/microscopy
https://research.arcadiascience.com/microscopy
https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1
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taxonomic group that is the focus of many studies at Arcadia [8]. Thus, we needed a

flexible and easy method to capture motility phenotypes in high throughput across

many species and environments.

The problem: Current methods for acquiring

and analyzing motility data don't scale

Our prior approach to in vivo imaging, which let us track individual cells, used agar

microchambers to isolate cells. This works especially well for capturing long swimming

trajectories but doesn’t efficiently scale either to many cells (hundreds to thousands)

or many different species and conditions because each differing group requires its

own agar pad. In addition, our previous motility analysis workflow is likely too slow for

the large dataset size required for our future high-throughput analyses.

Our solution: A streamlined workflow to acquire,

process, and analyze microscopy videos to

study motility

We created a method to 1) capture cell trajectories from many pooled individuals, 2)

extract features of their movement, and 3) compare motility metrics across groups

(Figure 1). Our workflow acquires 20-second brightfield videos at 20 frames per

second and then quantifies features of swimming in single-celled organisms. We

increased the data acquisition by loading cells in microtiter plates and by automating

the acquisition of time-lapse microscopy videos using Nikon’s NIS-Elements software

(JOBS) software.

The bulk of this resource is a computational pipeline (“SwimTracker”) for segmentation,

cell tracking, and extracting motility metrics from the time-lapse microscopy videos

(Figure 1). In addition, we generated a set of Jupyter notebooks that let you aggregate

these summary motility metrics, statistically compare them across different

populations of cells, and visualize differences between them via univariate and

multivariate analysis (Figure 1).



Overview of our approach to high-

throughput motility data acquisition

and analysis.

We’ve highlighted features of the

SwimTracker computational pipeline

and its compatibility with a range of

sample preparation options for imaging.

We also describe how we applied

this strategy to measure swimming

in the unicellular alga

Chlamydomonas reinhardtii and

validated it regarding imaging time,

sample preparation, and imaging

vessel. We less rigorously tested

but also validated that we could

track swimming in organisms

smaller (5 µm) and much larger (125

µm) than 8 µm-long

Chlamydomonas (Supplemental

Figure 1 and Figure 2).

These in vivo imaging methods let

you quantitatively compare diverse

swimming phenotypes across

groups of interest. We think they’ll

be relevant for researchers

interested in understanding the

mechanisms of movement, such as

ciliary/flagellar beating and the

responses of protists to drugs and

other stimuli. The high throughput

enabled by our approach also

allows the study of many species

and environmental conditions.

The approach
To develop this swimming assay for single-celled organisms, we first established an

automated protocol for recording time-lapse microscopy videos (see “Microscopy”)

using a unicellular algae Chlamydomonas reinhardtii (see “Cell culture and preparation

for imaging”) in two different sample formats (see “Vessel preparation”). The two

formats, or vessels, were agar microchambers (we refer to these as “microchambers”)

and individual wells of a 384-well microtiter plate (we refer to these as “wells”). We

Figure 1
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compared these two sample formats to see whether one might be better for particular

use cases, potentially increasing flexibility for the user (spoiler: they both work, but

format really matters. More info on that in “Vessel type strongly impacts motility”).

Sample preparation

Cell culture and preparation for imaging

We ordered wild-type Chlamydomonas reinhardtii strain CC-124 from the

Chlamydomonas Resource Center (University of Minnesota). After receiving the strain

from the culture center, we prepared lawn plates as described previously [9]. We

maintained clonal populations from stock streaks by live transfer once every two

weeks on 1.5% agar plates with tris-acetate-phosphate (TAP) medium. We incubated

plates at room temperature under 12:12 light: dark cycles. For all motility experiments,

we transferred cells (1 cm strip using a loop) from lawn plates to water to induce the

mixed-stage cells to become gametes, which are flagellated and motile [10][11]. We

resuspended these cells in water by agitating the loop against the inside wall of a 1.5

mL microcentrifuge tube containing 500 µL of sterile Milli-Q water. We wanted to test

factors influencing the proportion of cells that became gametes. To do this, we left

tubes on the bench for 4 or 21 h to compare populations of cells that spent different

amounts of time in water and might be at different stages of transition to gametes. We

also compared cells that we pipetted from either the topmost portion of the water or

the middle but above the pellet of settled cells.

We ordered wild-type Isochrysis galbana strain UTEX987 from the Culture Collection of

Algae at The University of Texas at Austin. After receiving the strain, we grew 200 mL

liquid cultures in Erdschreiber’s medium on an orbital shaker at 120 rpm at room

temperature under 12:12 light: dark cycles. We diluted cells two-fold in synthetic

seawater.

We ordered wild-type Paramecium tetraurelia strain 8s 4-d2 from the Culture

Collection of Algae and Protozoa. After receiving the strain, we prepared liquid cultures

in Chalkey’s medium pre-seeded with C. reinhardtii strain CC-124 as a food source. We

maintained 10 mL cultures on the bench at room temperature without shaking in T75

cell culture flasks.

https://www.chlamycollection.org/
https://utex.org/products/utex-lb-0987?variant=30992145055834
https://www.ccap.ac.uk/index.php/our-services/how-to-order/
https://www.ccap.ac.uk/index.php/our-services/how-to-order/


Vessel preparation

We imaged cells in two types of vessels — agar microchambers and microtiter plates

(Figure 2).

We made agar microchambers using a PDMS stamp purchased from RMS

Microstamps [2], following our protocol, “Molding microchambers in agar with PDMS

stamps for live imaging” [12]. The dimensions of the stamp's protrusions resulted in

circular indents in the agar that were 100 µm in diameter and 40 µm deep. Because

these microchambers are so small, shallow, and numerous (~10,000 for a stamp ⅞ in²),

pipetting directly into individual wells is impossible; therefore, we load a single strain or

species into each individual stamped piece of agar.

To prepare samples on agar microchambers, we wetted the surface with 5–10 µL of

water and then added 2 µL of cells onto one section of the agar at a time. We allowed

the drop to spread across the agar and then visually checked the distribution of cells

across the microchambers using an Olympus CK 2 inverted phase microscope. We

repeated this process 2–5 times to ensure the cell density was somewhat evenly

distributed across the microchambers. Before placing the coverslip (#1.5 thickness for

imaging), we used a Kimwipe to wick up water at the edge of the agar and glass. Finally,

we sealed the coverslips using a small paintbrush to apply VALAP (1:1:1 mixture of

vaseline, lanolin, and paraffin) heated to 70 °C.

To load microtiter plates with either C. reinhardtii or Isochrysis galbana, we pipetted 20

µL of cells into the bottom of a well of a 384-well, black-walled, glass-bottom plate

(Cellvis, #P384-1.5H-N). To pipette Paramecium tetraurelia, we first poured organisms

into a 12-well plate. We visualized them on a phase contrast microscope before gently

pipetting them using a wide-bore pipette tip (Molecular BioProducts, ART 200G) and

transferring them into wells of the 384-well plate described above.

Microscopy

Hardware: Objective, microscopes, cameras

The preferred imaging setup differs depending on whether the cells have been loaded

into agar microchambers or microtiter plates. Therefore, we performed brightfield

time-lapse imaging on two different microscopes. For samples in agar

https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://dx.doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://researchmicrostamps.com/shop-online/100um-dia-t7dsm


microchambers, we imaged using an upright Nikon Ni-E microscope equipped with a

Photometrics Kinetix digital sCMOS camera and built-in LED light source. We imaged

samples in glass-bottom microtiter plates using an inverted Nikon Ti2-E & Yokogawa

CSU W1-SoRa confocal microscope fitted with an ORCA-Fusion BT digital sCMOS

camera (Hamamatsu) and a LIDA Light Engine (Lumencor) for illumination. However,

this imaging could be done with any inverted widefield microscope and camera. We

used the same type of objective lens (Nikon Plan Apo 10× 0.45 Air objective) for both

microscopes. For both microscopes, we acquired data using the same software: Nikon

NIS-Elements AR (version 5.42.03) and the “High-Content Analysis” package to

implement automation.

Image acquisition parameters

The parameters we used for acquiring image data were:

20 s time-lapses recorded in brightfield at the rate of 20 frames per second (50 ms

exposure time) with a 10× 0.45 NA air objective

Light intensity set to maximize the dynamic range of the acquisition system

610 nm longpass filter (ThorLabs FGL610S) placed over the light source of the

upright microscope [1]

To prevent phototaxis, we imaged cells using red light as described previously [2]

We used these parameters to acquire videos on both the upright Ni-E widefield

microscope (using agar microchambers) and the inverted Ti2-E microscope (using

microtiter plates).

Automated acquisition workflow

We increased throughput by automating time-lapse microscopy acquisitions. We

developed the automation workflows using Nikon NIS-Elements JOBS automation

software and provide them on GitHub. While these workflows can only immediately be

implemented with compatible hardware and software, most modern microscopy

software packages offer the same functionality. The workflow consists of the following

steps:

https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/main/resources/microscopy_docs


1. Define the optical configuration: Set optical parameters such as the objective

lens magnification, light intensity, exposure time, and time-lapse duration.

2. Define the stage area: Set the bounds of the translation stage to either the limits

of the slide area containing agar microchambers or to match the geometry of the

microtiter plate. If possible, define a focus surface to compensate for sample tilt

as the stage is translated across the sample.

3. Define a tiling scheme: Create a grid of tiles that'll encompass the defined stage

area. For imaging cells in microchamber pools, we generally set the field of view to

contain 16 pools and tile with a small amount (1–2%) of overlap. For imaging cells

in microtiter plates, we generally acquire one time-lapse per well. However,

depending on cell density, it might be better to capture multiple fields of view per

well.

4. Run the acquisition: For each field of view defined by the tiling scheme, acquire a

time-lapse with the chosen optical configuration.

The resource
We’re sharing an approach we developed to quantify swimming in small organisms

using a computational pipeline, SwimTracker. While we also focus on the sample

preparation used for measuring swimming unicellular algae, this part of the workflow is

flexible — the rest works using any time-lapse data as input (Figure 1). SwimTracker

takes raw time-lapse microscopy data of swimming cells, applies cell tracking, and

outputs comma-separated value (CSV) files with extracted motility metrics and MP4

videos with animated trajectories of the tracked cells. Our GitHub repo for

SwimTracker also includes a set of Jupyter notebooks for performing multidimensional

analysis and statistical tests on the data.

In “SwimTracker tracks cells and measures a suite of motility metrics,” we give an

overview of our assay and the statistics SwimTracker calculates. In “Validating our

strategy,” we walk through quality-control checks we ran to ensure our results weren’t

affected by some obvious potential variables. While some of the variables we checked

had little impact or were somewhat specific to testing the workflow on C. reinhardtii, it’s

worth noting that we found the biggest differences in our calculated motility metrics

based on the vessels in which we confined cells for imaging. We discuss these tests

https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1


and recommendations for when to use different vessel types in “Vessel type strongly

impacts motility.”

SwimTracker tracks cells and measures a suite

of motility metrics

We primarily used Chlamydomonas reinhardtii, a motile, unicellular alga, to develop

this method. We prepared C. reinhardtii gametes in two types of vessels for brightfield

imaging: agar microchambers and 384-well plates (see “Sample preparation”).



A schematic of the image-processing pipeline for organisms swimming in

agar microchambers (left, orange) and wells of glass-bottom microtiter

plates (right, purple).

We don’t need to detect microchambers or spatially crop the time-lapse video

for trajectories in wells.

We developed “SwimTracker” as a Python-based image processing pipeline to

calculate cell trajectories from the time-lapse videos. It processes images of samples

in agar microchambers (Figure 2, left) with two additional steps than the workflow for

Figure 2



Illustrations to visualize cell trajectory

quantifications from time-lapse

microscopy data.

microtiter plates (Figure 2,

right). These additional steps

are necessary to detect and

crop individual microchambers

before cell segmentation and

trajectory calculation. The

pipeline detects individual

microchambers by first

applying a Sobel edge filter to

the mean intensity projection

of the raw time-lapse. It then

applies a Hough transform to

the edge-enhanced image so

we can identify and locate

individual microchambers.

SwimTracker then extrapolates

this uniform, grid-like

arrangement of

microchambers to determine

the locations of

microchambers that the initial

segmentation doesn’t detect.

Next, SwimTracker segments

cells from the time-lapse to

facilitate cell tracking. First, it

subtracts the mean intensity

projection from each time-

lapse to remove the static

background and enhance the

contrast of the cells. Then, the

pipeline binarizes the videos using thresholding (Otsu’s method, Figure 2, “Segmented

cell(s)”). Finally, it tracks cells using btrack (version 0.6.5) [13] with the default

configurations. SwimTracker outputs the trajectories of each segmented cell in CSV

format for subsequent analysis.

Figure 3

https://btrack.readthedocs.io/en/latest/index.html


You can find the SwimTracker pipeline for tracking cell trajectories, calculating

motility metrics, and conducting statistical analysis in this GitHub repository (DOI:

10.5281/zenodo.14042793).

To quantify swimming behavior, we calculated 11 metrics that capture various aspects

of a unicellular organism's movement based on existing methodologies [14]. We

describe all 11 metrics in Table 1, six of which we illustrate in Figure 3.

Motility metric Description

Total time* Total time of cell trajectory

Total distance* Total distance traveled along a trajectory

Net distance* Distance between the start and end point of the trajectory

Max sprint length Maximum distance traveled in a given time interval

Confinement ratio* The ratio of net distance to the total distance

Mean curvilinear

speed*
The average speed of a cell along its curved trajectory

Mean linear speed
Average speed of a cell along a straight path between its

start and end point

Mean angular speed* Average rate of angular change

Number of rotations Number of rotations a cell makes along its trajectory

Number of direction

changes

Number of times a cell changes its direction minus the

total number of sign changes in its velocity

Pivot rate
The ratio of the number of direction changes to the total

distance

Table of motility metrics that SwimTracker calculates to characterize a

cell’s trajectory.

Metrics with asterisks are illustrated in Figure 3.

Table 1

https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1
https://doi.org/10.5281/zenodo.14042793


Raw trajectories require filtering

In our trajectory data, some traces of single cells were clearly problematic. For

example, in wells, many cells swim in and out of the focal plane, leading to many short

trajectories and the possibility of capturing more than one trajectory per cell.

Furthermore, non-motile or minimally motile cells in both wells and microchambers

can lead to trajectories with long temporal duration but little spatial displacement. To

eliminate trajectories from minimally motile cells and reduce the likelihood that we

were analyzing more than one trajectory per cell, we filtered trajectories to be at least

10 s in duration (total time) and 20 µm in length (total distance). Both filters are

implemented in “1_compute-summary-motility-metrics.ipynb.”

Validating our strategy

SHOW ME THE DATA: All data, including the raw time-lapse microscopy data

and computed cell trajectories, is available via the BioImage Archive (DOI:

10.6019/S-BIAD1298).

We performed a series of tests to evaluate the impact of experimentally controllable

parameters on the data acquisition and analysis workflow. First, we tested whether our

imaging parameters (e.g., duration, temporal sampling density, light exposure) affected

swimming behavior. Next, because we wanted to apply this approach to assay gametic

swimming, we examined two experimental factors influencing the life history transition

to gametes. Finally, we tested whether different vessels produce different swimming

statistics.

Imaging time doesn’t affect swimming

We wanted to image as briefly as possible to enable large-scale data acquisition

across organisms or samples, but acquisition time could impact the motility statistics.

Therefore, we assessed whether motility measures changed across the acquisition

period (Figure 4, “2_temporal-variation-in-motility-metrics.ipynb”). We computed linear

regressions between each individual metric and image acquisition time to calculate

correlation coefficients for these relationships (Figure 4, Supplemental Table 1). Ten of

the eleven metrics weren't correlated with imaging time (p > 0.1 in all cases, linear

https://github.com/Arcadia-Science/2024-unicellular-tracking/blob/v1.0.0/notebooks/1_compute-summary-motility-metrics.ipynb
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1298
https://doi.org/10.6019/S-BIAD1298
https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/main/notebooks
https://github.com/Arcadia-Science/2024-unicellular-tracking/blob/main/results/figure-4_regression_stats.csv


regression, Supplemental Table 1), the exception being max sprint length, which

weakly correlated (p = 0.048, Supplemental Table 1). In the scatter plots below, we

highlight the three metrics we focus on for the rest of the analyses (Figure 4). Overall,

we found that on these timescales, the swimming behavior of the cells isn't influenced

by the imaging duration.

Scatter plots showing the variation of several motility metrics over the

duration of an imaging experiment in microchambers.

Each point in the scatter plot corresponds to an individual cell’s trajectory at a

particular 20 s interval during the experiment. Linear regressions show no

significant correlation between imaging duration and confinement ratio and

mean curvilinear speed (p > 0.1, linear regression) but a slight correlation with

max sprint length (p < 0.05, linear regression). Note that we translated the stage

between each time-lapse such that in each 20 s time interval, we imaged a

different group of cells. Multiple points exist at each 20 s interval in the scatter

plots because each field of view contains multiple microchambers.

SwimTracker can capture subtle effects on motility

We wanted to evaluate SwimTracker's ability to capture subtle changes in motility.

We’ve worked extensively with the single-celled alga Chlamydomonas reinhardtii and

have previously used differing sample preparations to alter its motility [9]. We,

therefore, evaluated the influence of two factors on motility. We include the data here

Figure 4

https://github.com/Arcadia-Science/2024-unicellular-tracking/blob/main/results/figure-4_regression_stats.csv
https://github.com/Arcadia-Science/2024-unicellular-tracking/blob/main/results/figure-4_regression_stats.csv


not to focus on the results but to show an example of the type of univariate

comparisons that SwimTracker can quickly generate.

First, we induced gametogenesis in actively growing vegetative populations for

differing amounts of time (either 4 h or 21 h [10][11]) with the expectation that longer

induction will result in more gametes in the population. Gametes have motility that

differs from vegetative cells [15]. Second, following induction, we collected cells from

the top of the water column and cells from the middle of the water column, expecting

that the more motile cells would be higher in the water column. We then evaluated

whether SwimTracker could capture the expected differences in motility.

We found that while neither the position in the tube nor time in water significantly

impacted the mean angular speed or confinement ratio, they both influenced the

mean curvilinear speed (Figure 5). Cells we pipetted from the top of the tube were 17%

faster (as indicated by the mean curvilinear speed) than those from the middle (p =

0.046, Mann–Whitney U) (Figure 5, A). Moreover, cells that spent only four hours in

water swam on average 24% faster than those that spent 21 h in water (p = 0.039,

Mann–Whitney U) (Figure 5, B). These results showed that both the position of cells in

the tube and the time spent in water can affect motility. This was unsurprising, but

shows how SwimTracker can be used for 1-dimensional comparisons between

variables of interest.



Kernel density estimates of motility metrics for cells grouped by different

experimental variables.

(A) Distributions of confinement ratio, mean curvilinear speed, and mean angular

speed for cells we pipetted from the top of the tube (light green) versus the

middle of the tube (dark green).

(B) Distributions of the same metrics for cells that spent 4 h in water (light blue)

vs. 21 h in water (dark blue) before imaging.

Statistical significance: * indicates p ≤ 0.05; ns indicates p > 0.05 as determined

by Mann–Whitney U tests.

Figure 5



The choice of vessel type

influences the distribution of

certain motility metrics.

Vessel type strongly

impacts motility

While we'd ideally collect motility data that

reflects normal behavior in a realistic

environment, vessel type may impact the

motility we're measuring. Therefore, we

examined the effect of the sample format

(the “vessel”) on cell swimming (see “Vessel

preparation” in Sample Preparation). Our

goal was to test whether cells behave

differently in the two types of vessels, agar

microchambers vs. microtiter plate wells,

which differ in total volume, confinement,

and the number of cells they can

accommodate (Figure 2). While the agar

microchambers [2] are extremely useful for

imaging many cells of a single species, the

sample preparation is laborious and difficult

to apply to many conditions or strains. Some

of our future motility work requires

comparisons between many treatments, so

we wanted to see if we could quantify cell

trajectories in microtiter plates.

We found that swimming behavior in

microchambers differed substantially from

that in wells of microtiter plates. We

compared confinement ratio, mean

curvilinear speed, and mean angular speed

from cell trajectories in microchambers to

those in wells (Figure 6). We expected that

the confinement ratio, which is the net

distance of a cell track divided by the total

distance, would vary between

microchambers and wells because of their

differing physical dimensions (Figure 2). In

Figure 6



The distributions of the

confinement ratio and mean

curvilinear speed are much

narrower for pools than for

wells, while the mean angular

speed appears less impacted.

**** indicates p < 0.001 and ns

indicates p > 0.05, Mann–

Whitney U.

line with this expectation, we found that the

cell movement was more confined in

microchambers (lower confinement ratio)

than cells in wells (microchambers: 0.11 ±

0.09; wells: 0.50 ± 0.23; Mann–Whitney U, p

< 0.001) (Figure 6, A and B).

We compared mean curvilinear speeds and

found that cells were > 2× faster on average

in microchambers than cells in wells

(microchambers: 33 ± 17 µm/s; wells: 13 ± 10

µm/s; Mann–Whitney U, p < 0.001) (Figure 6,

A and C). A previous study examined the effect of microchamber size on C. reinhardtii

swimming using microfluidics. They varied the diameter but not the height of their trap

sizes and found that cells swam faster in wider traps (200 µm diameter, 30 µm height)

[1]. The vessel types that we examined varied from each other in not only x and y

dimensions but also in z, resulting in substantial differences in volumes (see Figure 2).

We observed no effect of vessel type on mean angular speed (Figure 6, B and C).

Taken together, these results demonstrate that the choice of vessel type influences

the distribution of measurements for certain aspects of swimming, highlighting the

critical importance of selecting the correct sample preparation method for the specific

experimental task.

Recommendation

The vessel type is the strongest sample preparation factor influencing motility

we’ve experimented with. If you aim to track single cells, select a stamp that

creates agar microchambers with dimensions appropriate for your organism's

size and swimming behavior (see [2]). If you want to compare motility metrics for

different populations of cells, then microtiter plates are easier to use.

While the two-dimensional plots were informative, we wanted a more holistic sense of

motility differences without selecting the metrics to describe them a priori. We

performed a principal component analysis (PCA) on six metrics (Figure 7, Table 1). We

selected these six metrics because they’re ratio-based and not biased by trajectory

duration. Because of the limited depth of focus, the trajectories we obtained from



microchambers have a longer duration, on average, than those from cells in wells. This

PCA analysis revealed a separation between microchamber and well trajectories with

limited overlap in PC 1 (Figure 7, A). This component's most heavily weighted features

are max sprint length, confinement ratio, and mean curvilinear speed (Figure 7, B). This

suggests that these two types of motility differ in speed and amount of turning, which

is consistent with our analysis of the individual metrics. And these two classes of

trajectories can be almost completely separated based on our metrics (Figure 7, A;

PC1).

Principal component analysis (PCA) on motility metrics

of Chlamydomonas reinhardtii swimming in two

different vessels.

(A) Separation of trajectories between groups as a function

of the first two principal components.

(B) The weights for each of the six motility metrics are

included in the PCA. The first PC seems to discriminate the

trajectories based on how fast and straight they are, while

the second PC is dominated by confinement.

Taken together, these results demonstrate that our workflow lets us analyze motility for

a much greater number and diversity of samples and allows us to distinguish subtle

Figure 7



behavioral differences across experimental conditions.

Recommendation

PCA lets you distinguish between groups of interest based on many motility

metrics at once. By looking at the PCA plots and the weightings, you can learn

which attributes drive the separation of the groups.

Additional methods
We used ChatGPT to suggest wording ideas and then chose which small phrases or

sentence structure ideas to use. We also used ChatGPT to help clarify and streamline

text that we wrote. Additionally, we used Grammarly Premium to help copy-edit draft

text to match Arcadia's style and to help clarify and streamline text that we wrote.

Key takeaways
Our computational pipeline, SwimTracker, lets you quantify swimming trajectories of

single-celled organisms from time-lapse microscopy datasets in high throughput. If

you aim to acquire high-resolution, single-cell tracks of only a few types of cells for

extended periods of time, agar microchambers are optimal. However, if cell

trajectories of a population of cells are sufficient and your goal is to compare many

treatments, then microtiter plates are best.

You can find the SwimTracker pipeline for tracking cell trajectories, calculating

motility metrics, and conducting statistical analysis in this GitHub repository.

Takeaways

1. SwimTracker works on brightfield microscopy videos to quantify a suite of motility

metrics for single cells that swim.

https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1


2. SwimTracker works on isolated cells (in agar microchambers) and groups of cells

(in microtiter plates).

3. Choosing a vessel type for organisms can influence the throughput of the assay

and even cell swimming behavior.

Next steps
We plan to use SwimTracker to compare motility from populations of Chlamydomonas

algae with different genetic backgrounds (e.g., hybrid progeny from a genetic cross, as

well as mutant strains that model specific diseases) and under different environmental

parameters (e.g., nutrients, drug treatments).

In the future, we'll use data-adaptive and machine-learning-based approaches to

classify cell motility behavior, allowing us to rapidly identify environmental or genetic

parameters impacting motility.

We did some preliminary work to confirm that this imaging workflow could work on

organisms of various sizes, including organisms both smaller (5 µm) (Supplemental

Figure 1) and larger (125 µm) (Supplemental Figure 2) than C. reinhardtii (8 µm). We’d

love to hear how our approach works as a motility assay for swimming organisms

within or beyond that size range and whether you can adapt it for other types of

locomotion (e.g., crawling, gliding, etc).

Acknowledgments Thank you to Harper Wood for helping maintain the

species lines used in the study and to Cameron

MacQuarrie for consultation on Chlamydomonas

culturing and handling.

Thank you to Robert Roth for assisting throughout

the writing process and providing guidance on

where the data was deposited.

https://assets.pubpub.org/3o0751q3/Supplemental_Fig1-41730917723347.mp4
https://assets.pubpub.org/3o0751q3/Supplemental_Fig1-41730917723347.mp4
https://assets.pubpub.org/8oh0ynwv/Supplemental_Fig2-41730917743432.mp4


References
Bentley SA, Laeverenz-Schlogelhofer H, Anagnostidis V, Cammann J, Mazza MG,

Gielen F, Wan KY. (2022). Phenotyping single-cell motility in microfluidic

confinement. https://doi.org/10.7554/elife.76519

Avasthi P, Essock-Burns T, Garcia G, Gehring J, Matus DQ, Mets DG, York R.

(2024). Gotta catch ‘em all: Agar microchambers for high-throughput single-cell

live imaging. https://doi.org/10.57844/ARCADIA-V1BG-6B60

Hansen TJ, Hondzo M, Mashek MT, Mashek DG, Lefebvre PA. (2012). Algal

swimming velocities signal fatty acid accumulation.

https://doi.org/10.1002/bit.24619

Seed CE, Tomkins JL. (2018). Positive size–speed relationships in gametes and

vegetative cells of Chlamydomonas reinhardtii; implications for the evolution of

sperm. https://doi.org/10.1111/evo.13427

Ginger ML, Portman N, McKean PG. (2008). Swimming with protists: perception,

motility and flagellum assembly. https://doi.org/10.1038/nrmicro2009

Fritz-Laylin LK. (2020). The evolution of animal cell motility.

https://doi.org/10.1016/j.cub.2020.03.026

Moran J, McKean PG, Ginger ML. (2014). Eukaryotic Flagella: Variations in Form,

Function, and Composition during Evolution.

https://doi.org/10.1093/biosci/biu175

Burki F, Sandin MM, Jamy M. (2021). Diversity and ecology of protists revealed by

metabarcoding. https://doi.org/10.1016/j.cub.2021.07.066

Avasthi P, Braverman B, Essock-Burns T, Garcia G, MacQuarrie CD, Matus DQ,

Mets DG, York R. (2024). Phenotypic differences between interfertile

Chlamydomonas species. https://doi.org/10.57844/ARCADIA-35F0-3E16

Sager R, Granick S. (1954). NUTRITIONAL CONTROL OF SEXUALITY IN

CHLAMYDOMONAS REINHARDI. https://doi.org/10.1085/jgp.37.6.729

Brawley SH, Johnson LE. (1992). Gametogenesis, gametes and zygotes: An

ecological perspective on sexual reproduction in the algae.

1

2

3

4

5

6

7

8

9

10

11

https://doi.org/10.7554/elife.76519
https://doi.org/10.57844/ARCADIA-V1BG-6B60
https://doi.org/10.1002/bit.24619
https://doi.org/10.1111/evo.13427
https://doi.org/10.1038/nrmicro2009
https://doi.org/10.1016/j.cub.2020.03.026
https://doi.org/10.1093/biosci/biu175
https://doi.org/10.1016/j.cub.2021.07.066
https://doi.org/10.57844/ARCADIA-35F0-3E16
https://doi.org/10.1085/jgp.37.6.729


https://doi.org/10.1080/00071619200650241

Essock-Burns T. (2023). Molding microchambers in agar with PDMS stamps for

live imaging v1. https://doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1

Ulicna K, Vallardi G, Charras G, Lowe AR. (2021). Automated Deep Lineage Tree

Analysis Using a Bayesian Single Cell Tracking Approach.

https://doi.org/10.3389/fcomp.2021.734559

Meijering E, Dzyubachyk O, Smal I. (2012). Methods for Cell and Particle Tracking.

https://doi.org/10.1016/b978-0-12-391857-4.00009-4

Seed CE, Tomkins JL. (2018). Positive size–speed relationships in gametes and

vegetative cells of            Chlamydomonas reinhardtii             ; implications for the

evolution of sperm. https://doi.org/10.1111/evo.13427

12

13

14

15

https://doi.org/10.1080/00071619200650241
https://doi.org/10.17504/protocols.io.j8nlkwpk1l5r/v1
https://doi.org/10.3389/fcomp.2021.734559
https://doi.org/10.1016/b978-0-12-391857-4.00009-4
https://doi.org/10.1111/evo.13427

