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PreHGT: A scalable
workflow that screens for
horizontal gene transfer
within and between
kingdoms

Horizontal gene transfer (HGT) is the exchange of DNA between

species. It can lead to the acquisition of new gene functions, so

finding HGT events can reveal genome novelty. preHGT is a pipeline

that uses multiple existing methods to quickly screen for transferred

genes.
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Purpose

Horizontal gene transfer (HGT) is the exchange of DNA between an organism and

another organism that is not its offspring. It can lead to the rapid acquisition of novel

functional traits in the recipient species, leaving distinctive genomic patterns behind in

the process. While not all HGT events are maintained in a genome or lead to adaptive
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The context
Adaptation and evolutionary innovation often occur through vertical inheritance and

gradual evolutionary processes. Lateral transmission of genomic sequences via HGT

is a contrasting evolutionary process that occurs between species instead of from

parent to offspring. When genes are transferred, HGT can be a source of rapid

functional innovation. Not all HGT events lead to adaptation — some may be neutral,

detrimental, or may not be maintained by natural selection and are subsequently lost

[1]. Nevertheless, HGT has been the underlying mechanism for many functional

adaptations [2][3].

benefit, looking for patterns of HGT across a diverse array of organisms is one way we

can survey for functional novelty. Many tools exist for computational discovery of HGT

events from genome sequencing data, targeting different genomic patterns and with

varying sensitivity, specificity, speed, and scalability. We designed the preHGT pipeline

to be a flexible and rapid tool for pre-screening genomes for HGT events. Our goal was

to create a pipeline to screen for putative HGT events in as many genomes as are

publicly available, or that become available in the future. We wanted an approach that

could successfully screen eukaryotic, bacterial, and archaeal genomes and that could

screen for transfer events between closely or distantly related species.

The preHGT pipeline uses multiple existing methods for HGT screening and the

elimination of false positives. It quickly produces a candidate list of genes that

researchers can further investigate with more stringent HGT detection methods,

different data modalities, or wet lab experimentation.

We hope this pipeline will be useful to researchers interested in exploring HGT in

RefSeq or GenBank genomes.

This pub is part of the platform effort, “Software: Useful computing at Arcadia.” Visit

the platform narrative for more background and context.

The preHGT pipeline is available in this GitHub repository.

https://research.arcadiascience.com/useful-computing
https://github.com/Arcadia-Science/prehgt/tree/v1.0.0


HGT occurs across all domains of life with different frequencies and via many different

mechanisms [4][5][6]. In bacteria, HGT most frequently occurs via transduction,

conjugation, or transformation. As asexual reproducers with dedicated machinery for

HGT, horizontal transfer is one of the most prominent mechanisms for quickly

generating genetic diversity. This can catalyze rapid evolution and adaptation to

different environmental conditions [3]. However, bacteria also combat HGT by

degrading foreign DNA with restriction enzymes and CRISPR [7][8]. Although

eukaryotes can undergo HGT through transposable elements, hybridization, and viral

transfer, the rate of HGT is relatively low compared to bacteria [5]. This is in part due to

structural barriers such as the nucleus that impede the transfer of foreign DNA into the

recipient's genome. In sexually reproducing eukaryotes, the frequency of successful

horizontal transfer is further reduced because foreign genomic material must reach

germ line cells to be transmitted from parent to offspring [9].

Surprisingly, HGT events leave behind similar signatures in recipient genomes

independent of the domain of life in which the transfer event occurred. When a gene is

transferred, the gene has a different evolutionary history than that of other genes in the

recipient's genome. This manifests in different ways depending on how closely related

the donor species is to the recipient species. The transferred gene may conserve the

function of the gene in the donor genome, may carry a transfer-associated gene

annotation, may be abnormally distributed in the species pangenome, or may deviate

from species-specific expectations in GC content or other characteristics [10]. The

strength of these signals often depends on how much time has passed since the

transfer event. Transferred DNA undergoes a process called amelioration, whereby the

sequence accumulates mutations over time and becomes less and less

distinguishable from the recipient’s genome and more and more different from the

donor’s genome [10]. Other evolutionary processes can further scramble the strength

or clarity of a transfer event signature. For example, if many speciation events

occurred since the time of the transfer event, it may be difficult to determine whether a

horizontal transfer event occurred or if the incongruent evolutionary history is due to

other evolutionary processes such as incomplete lineage sorting [11]. If multiple

transfer events of the same gene have occurred, or if there have been gene

duplications and losses post-speciation, the evolutionary history of a gene may be

even more difficult to disentangle. Lastly, convergent evolution and genome

contamination can confound HGT discovery by genome sequence analysis as these

processes can leave behind similar genomic signatures as bona fide HGT events [12]

[13][14].



Given this variation, detecting HGT in genome sequence data can be difficult, or at the

very least, may require multiple strategies to find different types of transfer events.

Luckily, researchers have developed many computational methods to interrogate the

genomic signatures left behind in genome sequence data by HGT in different ways

(Table 1). These methods fall into two general categories: parametric and phylogenetic

[10].
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Table 1. Non-exhaustive list of computational tools for HGT discovery.
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Composition: Composition different from acceptor genome.



Parametric methods analyze the genome of interest to identify regions that deviate

from species-specific expectations in GC content, codon usage, amino acid usage, k-

mer frequencies, gene annotations, or other characteristics [10]. These methods are

fast, but natural differences in genome uniformity can lead to over-prediction and they

are often limited to recent transfer events for which amelioration of transferred DNA is

limited [10]. Parametric approaches can also be biased by gene length [45][46], so

they may be difficult or impossible to use on genes, which vary in size, as opposed to

sliding windows across the genome, which are a consistent length.

Phylogenetic methods detect inconsistencies between gene and species evolution

[10]. This category can be further divided into explicit and implicit methods. Explicit

methods test alternative evolutionary scenarios using tree-based analysis, while

implicit methods rely on implied phylogenetic relationships derived from comparative

genomic approaches. Gene-by-gene explicit phylogenetic methods are the gold

standard in horizontal gene transfer detection [10][47]. The most robust of these

approaches works by formally reconciling gene family tree topologies (where each tip

is a protein sequence belonging to a species) with the species tree topology (each tip

is a species) under explicit Maximum Likelihood inference for models of gene family

duplication, transfer, and loss [48][49]. These methods identify candidate ancestral

HGT events while accounting for the confounding impacts of gene duplication and

loss on these inferences. Although powerful, these methods require that gene

homology is already known and that gene family trees of these homologous

sequences have already been inferred. Consequently, these methods are typically

ideally suited for focused application to a set of gene families of special interest and

thus are less computationally tractable to apply at scale than other HGT prediction

methods.

Without a priori knowledge about the donor and recipient genomes for horizontally

transferred genetic material, it becomes necessary to sample in a taxonomically broad

and unbiased manner. In this respect, implicit phylogenetic methods are particularly

well suited to hypothesis-free discovery of HGT events, as they scale more readily to

hundreds of genomes than do explicit methods. Implicit methods rely on patterns that

Pangenome: Any set of organisms one can reasonably build a pangenome from (clade, species, genus).

Kingdom: Cross-kingdom detection, usually by user-defined definition of ingroup and outgroup.

Sub-kingdom: Any taxonomic level lower than kingdom and higher than species or strain, usually with decreasing

accuracy at higher taxonomic resolution.



correlate with evolutionary history to infer HGT. For example, you can use BLAST to

identify homologous genes with different taxonomic labels than the query gene, which

can be analyzed to find patterns consistent with HGT [19][25][50][51][52]. Similarly,

you can use the pangenome — the full complement of genes shared between a set of

closely related organisms — to investigate HGT by determining the presence or

absence of genes across all genomes [53][54].

Across the HGT literature and tool space, including both parametric and phylogenetic

methods, genome contamination is often underappreciated. Contaminant sequences

in genomes can look like HGT events. This has led to rebuttals [14][55] against high-

profile papers [56][57] that claimed detection of high fractions of horizontally

transferred genes, and may more generally impact the biological interpretation of HGT

predictions. At least 0.54% of genomes in GenBank and 0.34% in RefSeq are

contaminated [58]. While some methods incorporate careful contamination checks

[19], others rely on filtering heuristics [16] or omit them entirely.

The problem

We sought a scalable computational approach for predicting HGT candidate genes.

We wanted the pipeline to be able to screen for HGT events across the tree of life and

across taxonomic scopes (from family- to kingdom-level transfers), and to assess the

likelihood that a candidate transfer event was instead the result of genome

contamination.

As other projects at Arcadia are developing explicit phylogenetic methods for the

inference of gene family evolution, we sought a solution that we could use upstream of

this tool to produce candidate species lists for further validation, and tried to avoid

using trees so as not to duplicate efforts.

Our solution

We built a pipeline that we’re calling “preHGT” to quickly find preliminary HGT

candidates in genomes with gene predictions. Our approach blends parametric and

phylogenetic implicit methods to generate a list of candidate genes that may have

been horizontally transferred (Figure 1). The preHGT pipeline uses compositional



scans, pangenome inference, and BLAST-based searches. It combines information

from these approaches, as well as annotation information, to highlight candidate

genes that are more likely to be contamination than HGT. By implementing multiple

HGT screens in one pipeline, we aimed to combine approaches that target different

signatures of HGT, to provide a more comprehensive HGT screening strategy.

Conceptual overview of the HGT screening approach

implemented in the preHGT pipeline.

Starting from a genus or genera, preHGT scans GenBank and

RefSeq and downloads matching genomes with gene models

(coding domain sequences) and annotation files. The coding

domain sequences are represented by colored bars, and genes of

the same identity are the same color. The pipeline uses the input

genes from all genomes of the same genus to build a pseudo-

pangenome. These genes are provided as input to two HGT

screening methods — compositional scans and BLASTp-based

approaches. These steps return HGT candidates that are then

annotated to predict function. Information from each of these steps

is summarized and returned in a final table.

As we were designing the pipeline, we were concerned about overall run times,

especially given that BLAST searches can be computationally expensive. We

implemented clustering heuristics at two key places to keep the pipeline fast. First, we

clustered the genes in input genomes to reduce the number of genes we investigated

for HGT potential. Given our eventual goal of running this pipeline on all publicly

available genomes, we wanted to assess the potential for HGT in redundant genes

only once. We did this by clustering genes in closely related genomes — those of the

Figure 1



same genus — prior to screening for HGT. Second, we clustered the NCBI BLAST non-

redundant protein database, reducing its size by over half, to increase the speed of

BLAST searches [59].

One of the reasons we were particularly excited to include BLAST in our pipeline was to

take advantage of a rich literature of BLAST-based HGT predictor indices (Table 1,

Table 2). Many creative and insightful HGT screening methods exist, each with its own

strengths. However, these methods are contained in different tools. Since BLAST is the

most expensive computational step of our pipeline and none of the methods rely on a

clustered BLAST database, we re-implemented them in the preHGT workflow. This

consolidation allows HGT screening using a single tool and a single BLAST run (Table

2).

We implemented the pipeline as both a Snakemake [60] and a Nextflow [61] workflow,

with software environments controlled by conda or Docker. The modular nature of the

workflow will allow us to incorporate additional methods over time.

The preHGT pipeline does not implement any new algorithms for HGT candidate

screening. However, the pipeline contributes to this space by:

�. Combining multiple existing HGT screening algorithms in one pipeline.

�. Using pangenome inference on eukaryotic genomes to inform a gene’s

contamination potential and phyletic distribution, and to reduce compute required

to run the pipeline.

�. Reducing the BLAST database size by clustering similar proteins, thereby

reducing compute required to run the pipeline and diversifying taxonomic

lineages represented in top hits.

�. Providing multiple information sources to help assess an HGT candidate’s

contamination potential.

The resource

The preHGT Snakemake and Nextflow workflows are available at this GitHub

repository (DOI: 10.5281/zenodo.8169269).

https://docs.conda.io/en/latest/
https://github.com/Arcadia-Science/prehgt/tree/v1.0.0
https://github.com/Arcadia-Science/prehgt/tree/v1.0.0
https://doi.org/10.5281/zenodo.8169269


Below we provide an overview of each step in the preHGT pipeline (Figure 2).

�. Retrieving gene sequences and annotation files. The pipeline begins with the

user providing a genus or genera of interest in a TSV file. The pipeline then scans

GenBank [62] and RefSeq [63] for matching genomes and downloads gene

models and genome annotation files using ncbi-genome-download. When a

genome is available in both GenBank and RefSeq, only the RefSeq version is

retained.

�. Building a pseudo-pangenome. For each genus, the pipeline then combines

genes into a pseudo-pangenome by clustering the nucleotide sequences at 90%

length and identity using mmseqs easy-cluster  [64]. For each cluster, MMSeq2

selects a single representative sequence by retaining the sequence with the most

alignments. The clustered nucleotide sequences are then translated into amino

acid sequences using EMBOSS transeq  [65].

We refer to this as a pseudo-pangenome, and not a pangenome, because we

empirically cluster genes based on sequence similarity and not by constructing

orthologous groups or by considering the evolutionary history of each sequence

[66][67]. We recognize that while this may collapse functionally different paralogs,

it is unlikely to obscure patterns of HGT from distant donor genomes; paralogous

genes share a common ancestor, so while they may serve different purposes for

the organism, at >90% identity only one copy of the gene needs to be screened

for HGT potential. Using a pseudo-pangenome is useful in two ways for the

pipeline. First, it reduces the number of genes that are investigated which reduces

run times. Second, it provides metadata about the gene. Singletons are more

likely to be contaminants, and genes that are only present in a subset of genomes

may have interesting evolutionary histories (e.g. gene loss).

�. Screening for HGT candidates. Using the genes in the pseudo-pangenome, the

preHGT pipeline then uses two approaches to screen for HGT candidates.

Compositional scan. The first approach uses relative amino acid usage to

detect proteins with outlying composition. It measures relative amino acid

usage using the EMBOSS pepstats  function [65], produces a distance matrix

with the base R function dist() , and hierarchically clusters the distance matrix

with fastcluster’s hclust  [68]. It detects outliers by cutting the resultant tree

with height/1.5  and retaining any cluster that contains fewer than 0.1% of the

pseudo-pangenome size.

https://github.com/kblin/ncbi-genome-download


Relative amino acid usage is the frequency that each amino acid is used in each

gene, normalized by the total number of amino acids in that gene. For example,

if alanine is used 27 times in a protein that is 100 amino acids long, the relative

usage would be 27%. Relative amino acid usage is generally conserved across

a genome and reflects an organism's environment [69]. We tried many

compositional metrics such as tetranucleotide frequency, GC content, and

codon usage. However, we found that outlying proteins were driven by abnormal

length for all metrics other than relative amino acid usage.

Given that this is a reference-free approach, genes returned by this screening

method do not have accompanying donor species predictions, which makes

interpretation more challenging. Aberrant relative amino acid usage can also

arise from mechanisms other than HGT and this method does not distinguish

between potential sources.

BLASTp scan. The second approach uses BLASTp to identify homologous

proteins. All genes in the pseudo-pangenome are BLASTed against a clustered

version of NCBI’s nr database (90% length, 90% identity) [59] using DIAMOND

blastp  [70]. The pipeline then adds lineage information to the BLASTp search

using dplyr, dbplyr, and RSQLite [71]. It scans these results for signatures of

transfer events using multiple, previously published algorithms (Table 2) [19][25]

[50][51][52].

One modification we made throughout is using length-corrected bit scores

output by DIAMOND blastp  instead of raw bit scores. Bit scores are sensitive

to gene length, so using corrected bit scores reduces biases associated with

gene length in HGT screening [72].

The choice of database will dramatically impact the results produced by this

screen. We chose to use a clustered version of the NCBI nr database [59] both

to make the BLASTp step faster and to ensure the results contain a variety of

taxonomic lineages in cases where many near and distant homologs exist.

Using this database, combined with our methods of choice (Table 2), the

preHGT pipeline screens for HGT events that occur in seven domains of NCBI’s

taxonomy: bacteria, archaea, fungi, plants, metazoa, other eukaryotes, and

viruses (“kingdom” taxonomic resolution). It will also screen for HGT events



between lineages that are in the same domain as the query genus but are

different up to the family level from that genus (“sub-kingdom” taxonomic

resolution).

Index Tool
Taxonomic

resolution
Data used Calculated by

Aggregate

hit support

[19]

AvP Kingdom
All bit

scores

Subtracting the sum of

normalized bit scores in

the donor group from

the sum of normalized

bit scores in the

acceptor group.

Alien index

[50]
NA Kingdom

Minimum

e-value

Subtracting the

transformed e-value of

the best donor hit from

the transformed e-value

of the best non-self

acceptor hit.

HGT score

[51]
NA Kingdom

Maximum

bit score

Subtracting the best

non-self acceptor hit bit

score from the best

donor hit bit score and

normalizing this value.

Donor

distribution

index [52]

NA Kingdom

Number of

hits per

kingdom

Measuring the

dispersion query

homologs across groups

by determining the

number of hits per

kingdom against the

total number of possible

kingdoms.

Gini

coefficient
NA Kingdom

Number of

hits per

kingdom

Measuring inequality

among values of a

distribution, where

values are the number of

BLAST hits observed for

each kingdom.

Entropy NA Kingdom

Number of

hits per

kingdom

Measuring disorder

among values, where

values are the number of

BLAST hits observed for

each kingdom.

Transfer

index [25]

HGT-

Finder

Kingdom,

Sub-

All bit

scores

Considering taxonomic

distances between

+



Index Tool
Taxonomic

resolution
Data used Calculated by

kingdom query and hit, bit score

ratios, and rank and total

number of BLAST hits.

Table 2. Algorithms that parse BLASTp results to predict HGT candidates.

�. Annotation. We then annotate the HGT candidates. For each candidate HGT

amino acid sequence, we use two different approaches for ortholog annotation.

First, the pipeline uses KofamScan for KEGG ortholog annotation [73]. Next, the

pipeline uses HMMER3 hmmscan  to assign annotations to HGT candidates.

hmmscan  compares each HGT candidate sequence against hidden Markov

models (HMMs) of proteins in a database. We built a custom HMM database to

target specific annotations of interest. The HMM database currently contains

Virus Orthologous Groups from VOGDB and biosynthetic genes, and can be

extended in the future to meet user annotation interests.

�. Reporting. The last step combines all information that the pipeline has produced

and outputs the results in a TSV file. The results include the GenBank protein

identifier for the HGT candidate, BLAST and relative amino acid usage scores,

pangenome information, gene and ortholog annotations, and contextualizing

information about the gene such as position in the contiguous sequence.

*NA: Not applicable.

+
Aggregate hit support is calculated by subtracting the sum of all normalized BLAST bit scores for all hits in an in-

group from an out-group. We use a different normalization equation than the original method, which leads to

different results.

http://hmmer.org/
https://vogdb.org/
https://github.com/Arcadia-Science/prehgt/blob/v1.0.0/inputs/hmms/hmm_urls.csv


Overview of the preHGT pipeline steps, inputs, and outputs.

Users provide a genus or genera of interest in a TSV file as input to

the pipeline. The workflow then downloads and parses the available

genomes for those genera, builds a pseudo-pangenome, and

predicts and annotates horizontally transferred gene candidates.

Types of HGT events that the pipeline screens

for

While we tried to create a fast and generalized pipeline, preHGT is better at detecting

some patterns of HGT than others.   The preHGT pipeline screens for HGT events where

the donor and recipient differ in taxonomy at the family level or above. It is most likely

more accurate when the transfer events occur between more distantly related

organisms and where the recipient gene retains homology to the gene in the donor

genome. We anticipate the primary use of this approach will be to identify candidate

transfer events and donor and recipient groups to which more granular approaches

can be applied to better disentangle the evolutionary history of the gene.

Figure 2



The parametric approach we implemented screens for genes with outlying relative

amino acid usage compared to the rest of the genes in the genome. This requires that

the donor and acceptor species differ in amino acid composition, and that these

differences persist in the transferred genes, a scenario that is most typical of recent

transfer events among evolutionarily divergent species.

The BLAST-based implicit phylogenetic approaches we implemented screen for genes

that exhibit a greater degree of sequence similarity among designated taxonomic

outgroups than within ingroups. In the original tools and papers in which these

algorithms were generated, the authors implemented or validated their approaches at

specific taxonomic levels that the preHGT pipeline adheres to (Table 2). Some are

designed to screen for cross-kingdom transfer events, while others can screen for

sub-kingdom-level events. However, because the chance of spurious inference of

homology increases among more closely related species, results should be more

carefully scrutinized at lower taxonomic levels (e.g. order, family). Homology detection

also becomes increasingly difficult at larger taxonomic distances, so highly diverged

homologs may be missed by the pipeline.

Additional considerations and caveats

How we deal with contamination and other sources of

false positives

HGT screens often return many false positives [56][57]. We used contextualizing

information about HGT candidates to reduce the number of false positives reported by

the pipeline.

Contamination is the biggest source of false positives in BLAST-based HGT screening

algorithms. Many genomes in GenBank and RefSeq are contaminated [58].

Contamination arises from impure sampling, contaminated reagents, lab cross-

contamination, sequencing artifacts, or reference database errors [74]. To combat the

presence of contamination, we incorporated multiple corroborating lines of evidence

to assess whether contamination is more likely than HGT. First, we determine the

length of the contiguous sequence within which the candidate gene is found. Short

contiguous sequences are more likely to be contaminants [58][75]. Next, we

determine how many genes are in the candidate gene’s cluster from our pseudo-



pangenome approach. Depending on the contamination source, it is unlikely that the

same contamination will occur in multiple genomes [76]. Therefore, if a homolog is

present in multiple genomes, it is less likely to be a contaminant. Lastly, for BLAST-

based results, we assess the percent identity between the donor and acceptor genes.

Amelioration deteriorates sequence identity after a transfer event [10], so the more

similar two genes are, the more likely similarity is driven by contamination. Many

methods use a cutoff of 70%–80% identity for contamination [16][77], but we instead

weigh this against other corroborating information.

In the future, we hope to further contextualize contamination potential against the

general contamination score for the acceptor genome. The more contamination a

genome contains, the more likely a candidate is to be a contaminant itself.

BLAST-based methods may also generate false positives arising from alignment errors

or alignment due to sequence similarity that does not arise from shared ancestry, such

as from convergent evolution or random chance. Alignment errors from short or low-

complexity sequences or from short, highly conserved domains may give the

appearance of a horizontal transfer event. To protect against this, we filter corrected

bit scores to those greater than 100, or, to rescue true homologs that are very

divergent, with a query coverage of greater than 70%. We also provide gene

annotations from multiple annotation sources to highlight hits that might be ultra-

conserved, such as those from ribosomal proteins. Over time, we hope to curate a list

of genes that the preHGT pipeline frequently detects as false positives and to develop

a strategy to filter them out.

Verifying bona fide HGT requires work beyond

preHGT

The preHGT pipeline provides a list of candidate HGT events. These candidates need

to be carefully scrutinized to determine whether they are biologically interesting and

whether they are more or less likely to be false positives. We built preHGT as a

generalized precursor to more in-depth HGT analysis (Figure 3). We envision that

preHGT can inform genome selection for comprehensive explicit phylogenetic

inference, which can help disentangle alternate evolutionary trajectories, or highlight

when not enough information is available to support HGT inference.



Funnel of methods for HGT screening and

validation.

Implicit phylogenetic and parametric approaches

are fast, generalized methods for screening for

HGT in genes or genomes, but these methods are

prone to false positives. Explicit phylogenetic

methods can help eliminate some false positives

or determine when there is not enough evidence

to support HGT candidacy.

After these computational approaches, validation

requires additional methods. Alternative data

modalities like transcriptome sequencing or

laboratory experiments like FISH or PCR can

provide additional evidence in support of HGT.

While powerful, these methods require curated

information about the donor and acceptor

genomes and the candidate genes and thus can

usually only be used after initial exploration.

After phylogenetic analysis, more analysis is still required to reject the null hypothesis

that no transfer event occurred. The appropriate experiments for this will depend on

the HGT candidate event itself. For example, if a bacterial gene has been transferred

into a eukaryotic genome, it may be appropriate to interrogate the candidate gene for

Figure 3



the presence of introns, or if transcriptome information is available, for the presence of

transcription- and eukaryotic-specific RNA modifications such as 5′ caps or Kozak

sequences. In the lab, PCR, FISH, or Southern blots may confirm the presence of the

sequence in the genome of interest, while Western blot or mass spectrometry can

confirm that the gene is transcribed and translated into a protein.

Limitations of the preHGT pipeline

Given our approach, we have identified multiple shortcomings. The most conspicuous

limitation is our focus on genes. The preHGT pipeline can only scan genomes with

gene models. We elected not to implement genome annotation as an early step in the

pipeline given that annotation procedures differ for eukaryotic versus bacterial and

archaeal genomes, and that eukaryotic genome annotation remains a challenging

problem from the genome alone [78][79]. This limits the preHGT pipeline to those

genomes with gene models (approximately 21%) and creates blind spots for HGT

detection across the tree of life. Of 56 eukaryotic phyla with genomes, only 45 have at

least one genome with gene models. Similarly, by treating genes in their entirety as the

unit that is horizontally transferred, we are unlikely to detect genes for which only a

nested region of the coding sequence was horizontally transferred.

There are also limitations born out of our decision to use composition or BLAST-based

HGT screening methods. First, these methods require that the gene has not

ameliorated to the composition of the acceptor genome or that it maintains detectable

homology to the donor genome. This may limit our detection of ancient HGT events.

Second, these methods will be less sensitive to HGT events that occur between

closely related organisms. Third, since BLAST-based approaches rely on taxonomies,

there are risks since taxonomies may be wrong and since they do not account for

branch lengths in the relatedness of species. Lastly, false positives may arise from

alignment between short or low-complexity sequences or from natural sequence

similarity such as what might arise from convergent evolution or from highly conserved

gene sequences. To combat both cases, we have implemented filtering criteria to help

eliminate these issues.

Lastly, we did not integrate an explicit phylogenetic approach to better resolve the

evolutionary histories of HGT candidates. We elected to forgo this step because

another team at Arcadia is developing a tree-based workflow. We are currently



experimenting with how to facilitate handoff between the two tools to rapidly enable

this next step in validation.

Additional methods
We used ChatGPT to add comments to our code and suggest wording ideas. We also

used ChatGPT to add comments to external code to help us better understand how it

worked when trying to implement some existing tools in another language.

Key takeaways
preHGT is a scalable pipeline that screens for potential HGT events in genomes with

gene models across the tree of life and taxonomic scales.

The pipeline leverages compositional and BLASTp scans, pangenome inference,

annotation, and reporting techniques to provide comprehensive results.

Multiple checks and filters defend against false positives, including contamination

detection and sequence alignment artifact filtering.

The pipeline is implemented in both Snakemake and Nextflow. Its modular design

means it’s easily extensible to incorporate more methods in the future.

preHGT aims to identify HGT events that users further investigate with other

approaches such as tree-based ones.

Next steps
Our follow-up plans include:

�. Eukaryotic HGT prediction: We plan to run the pipeline on all eukaryotic

genomes in GenBank and RefSeq that have gene models and to make the results

available.

�. Building a user interface for results exploration: We plan to build a simple user

interface to explore results produced by the pipeline. Exploration modes will allow

users to dive into gene transfer events by donor or acceptor taxonomy, predicted



functions of genes involved, or by strength of result, and to visualize the results in

their genomic context.

�. Adapting the pipeline to take transcriptome assemblies as input: We plan to

extend the pipeline to run on assembled transcriptomes by incorporating

upstream gene prediction rules. We will then run the pipeline on the

transcriptomes in the NCBI Transcriptome Shotgun Assembly database and make

the results publicly available.

�. Integrating new algorithms for HGT screening: Other algorithms exist for the

interpretation of BLASTp results. We plan to integrate those from other tools into

this pipeline in the future.

We welcome feedback on the user experience, the results we include, or additional

algorithms or metrics that would be helpful to incorporate.
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