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Using protein language
models to predict coding
and non-coding
transcripts with plm-utils

We explored the use of embeddings from protein language models

to distinguish between genuine and putative coding open reading

frames (ORFs). We found that an embeddings-based approach

(shared as a small Python package called plm-utils) improves

identification of short ORFs.
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Purpose

We’re interested in detecting small open reading frame (sORF)-encoded, bioactive

peptides in transcriptomes. sORFs are open reading frames that contain fewer than

300 nucleotides and often use alternate start codons. Computationally detecting real

sORFs is challenging, and we wanted to more accurately detect sORFs that encode

functional peptides.

http://localhost:4321/user/audrey-bell
http://localhost:4321/user/adair-l.-borges
http://localhost:4321/user/feridun-mert-celebi
http://localhost:4321/user/keith-cheveralls
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/gilad-mishne
http://localhost:4321/user/taylor-reiter


The context
Advances in ribosome profiling and mass spectrometry have experimentally

demonstrated that some small open reading frames (sORFs) are not random

sequences in genomes but lead to functional products [3]. This has spurred a greater

appreciation for and interest in the coding potential of sORFs. Most genomes encode

many sORFs, only a fraction of which are transcribed and even fewer translated. Most

We hypothesized that latent information in the embeddings of large protein language

models might contain information about the coding propensity of amino acid

sequences, even though this wasn't the original use case for such models. We were

encouraged toward this line of thinking because other peptide classification tools that

identify cleavage peptides [1] and predict peptide bioactivity [2] have successfully

used large protein language models to improve classification accuracy.

We conducted multiple tests across different datasets and observed increased

accuracy over leading tools when we applied these innovations to predicting sORF

coding potential. On all transcripts from a set of 16 diverse research organisms, our

tool performed comparably to the leading tool, RNAsamba. However, our method

significantly outperformed that tool for short sequences. Additionally, on the

RNAChallenge dataset, where most tools struggle, we achieved an accuracy of 33%

compared to the average tool accuracy of 11%. While our approach improves accuracy

on this challenging prediction task, the overall accuracy indicates that there's still work

to be done.

We packaged our approach as a small Python package called “plm-utils.” Using the

Python package infrastructure improved the usability and portability of our tool and will

allow us to expand the package in the future if it proves useful.

This pub is part of the project, “Software: Implementing useful and innovative

computing.” Visit the project narrative for more background and context.

The plm-utils Python package is available in this GitHub repository.

The code to train and evaluate the sORF plm-utils model is available here.

https://research.arcadiascience.com/software
https://research.arcadiascience.com/software
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https://github.com/Arcadia-Science/peptigate/blob/v1.0.0/curate_datasets_and_build_models.snakefile


transcribed sORFs occur in the 5′ or 3′ UTR of the main coding domain sequence in a

transcript and perform a regulatory role by impacting the translation of the mRNA [4].

However, some sORFs encode translated peptides with functional roles as small

proteins. The majority of sORFs that encode peptides have been identified in

presumed long non-coding RNAs [4][5], although some have also been found

upstream of, downstream of, and overlapping with, transcripts with longer coding

domain sequences [4].

sORFs are alternately referred to as “short” open reading frames [6], while functional

peptide products are referred to as sORF-encoded polypeptides (SEPs or sPEPs),

microproteins, or micropeptides [7]. These peptides are genomically encoded by open

reading frames of fewer than 300 nucleotides (100 codons) and are synthesized via

DNA transcription and ribosomal translation. Most sORFs use codons that differ from

the traditional start codon (AUG) by one nucleotide (UUG, CUG, GUG, and ACG) [8].

Historically, sORFs have been underrepresented in protein annotations [9]. sORFs

occur frequently throughout genomes, so several heuristic filters are used in tools that

predict protein-coding regions to reduce false-positive annotations [7]. These filters

include length cutoffs of 300 nucleotides [10] and the use of the AUG (ATG) start

codon [11]. Both of these filters preclude the computational annotation of sORFs

because sORFs are shorter than 300 bases and the majority start with non-AUG start

codons [8][9].

The current tool space

Many computational tools have been developed to identify sORFs in sequencing data.

The majority perform sORF discovery on either genome or transcriptome assemblies.

These tools generally use evolutionary signatures or sequence heuristics to classify

coding versus non-coding sequences.

Tools like phyloCSF [12], PhastCons [13], and micPDP [14] use genome alignments

and codon substitution patterns to identify sORFs. The three main limitations to these

tools are the requirement for a genome assembly, the lack of built-in evidence that the

predicted sORF gets transcribed, and dependence on cross-species conservation (in

some species, sORFs encode evolutionarily young proteins that aren’t conserved in

other species [6]).



The other common strategy for computational sORF identification is to predict

whether a transcript (or an ORF predicted on a transcript) is coding or non-coding.

These tools either use heuristics like codon substitution and nucleotide composition

or train machine learning algorithms to predict whether a transcript or an ORF contains

a coding sequence. Some tools, like MiPepid or sORFfinder [15][16], are trained

specifically on short sequences, while others, like RNAsamba and DeepCPP [17][18],

are trained on all transcripts but perform well on sORFs. In both cases, these models

often struggle with small training datasets or heuristics that do not generalize to other

species or sequence types [19].

Our approach

Foundational models of proteins like AlphaFold2 [20] and Evolutionary Scale Modeling

(ESM) [21] have revolutionized computational approaches to protein research [22].

Protein language models are trained on large numbers of protein sequences and other

information like multiple sequence alignments or protein structures. After “learning”

patterns in this original data, a model can ingest new protein sequences and relate

them to the existing information in the model in a process called embedding. In the

case of ESM, an embedded protein sequence is represented as a numerical vector,

typically a high-dimensional array of floating-point numbers. While embeddings are

not directly interpretable by humans, they capture information about the structure of a

protein, including orthogonal attributes that correlate with structure, like function [21]

[23][24].

We wrote a Python package called plm-utils (short for protein language model utilities)

that provides a basic set of tools for generating and analyzing embeddings of protein

sequences using pre-trained protein language models. It currently only works with

ESM2 models, but we may expand it in the future if doing so opens new use cases. If

other protein language models would be helpful in your research, please let us know by

commenting here or posting an issue on the plm-utils GitHub repository.

While we set this package up as a general tool for using the information in protein

language models to improve protein prediction tasks, we developed it specifically to

predict whether a transcript is coding or non-coding. We posited that there may be

latent information in protein sequences that is not currently used by other tools. This

information could be extracted by protein language models, which might help in the

classification of coding transcripts. We thought this might particularly be true for

https://github.com/Arcadia-Science/2024-plm-utils


sORFs because embeddings of protein language models have helped improve other

difficult tasks with peptides like predicting cleavage peptides [1] and annotating

peptide bioactivity [2].

The resource: plm-utils

The plm-utils Python package is available in this GitHub repository (DOI:

10.5281/zenodo.12775178).

Plm-utils is a small Python package that includes functions for working with protein

language models. Currently, it contains code for building binary classifiers from labeled

data using ESM2 embeddings. It also contains helper functions for our first use case,

predicting whether a transcript is coding or non-coding.

First use case: predicting coding vs. non-

coding transcripts

For the task of classifying coding vs. non-coding transcripts, plm-utils first uses orfipy

to find and translate the longest open reading frame on each contig [25]. Plm-utils

considers multiple potential start codons (AUG, UUG, CUG, GUG, and ACG) as ORFs in

general and sORFs in particular can use any of these [8][26]. After translating all

possible ORFs, we retain only the longest putative ORF from each transcript, assuming

that this ORF is the one most likely to be genuine and encode a bioactive protein. Next,

plm-utils embeds the putative translated ORF sequences in the ESM2 model

embedding space (esm2_t6_8M_UR50D). Plm-utils then uses these embeddings and

ground-truth labels to train a random forest classifier. In this case, a classifier is trained

to predict whether the ORFs were translated from a coding or non-coding transcript.

This results in a model that predicts whether a given amino acid sequence represents

a genuine ORF. In more precise terms, the model classifies a given amino acid

sequence as “coding” or “non-coding” based on its similarity to the longest ORFs

derived from the coding and non-coding transcripts in the training dataset. The

primary output of plm-utils is a TSV indicating whether a transcript is coding (positive)

or non-coding (negative).

https://github.com/Arcadia-Science/2024-plm-utils/tree/v1.0.0
https://doi.org/10.5281/zenodo.12775178


To apply this approach to sORFs specifically, we added a length filtering step after ORF

prediction and before embedding and coding vs. non-coding classification.

Throughout this pub, we evaluate the capacity of plm-utils to differentiate between

coding and non-coding transcripts, serving as a preliminary test of its effectiveness. To

conduct a thorough assessment, we developed several models. The performance of

each model varies depending on the specific attributes of the training data. This

means that a model trained on all coding ORFs in a transcriptome will perform

differently than a model trained on only sORFs. However, every model created using

plm-utils is compatible with any sequencing data that ESM can process (the maximum

sequence length ESM2 can handle is 1,024 amino acids).

Potential future use cases

We set up the plm-utils Python package so that it can be easily adapted to future use

cases. At the moment, we have building blocks in place for embedding sequences,

training, and making predictions from a binary classifier. We think this setup could be

well suited for predicting whether a protein has a specific function or for predicting

traits of a protein such as whether it is membrane-bound. Users would first need to

build a new model using labeled training data for new use cases. This model could

then be used to predict the traits of new, unseen data.

If you have a use case that would require additional functions in the plm-utils package,

we would love to hear your needs either as a comment on this pub or as an issue on

the GitHub repository.

Plm-utils is better at classifying short coding

sequences than RNAsamba

To assess whether protein language models improve the classification of coding

sequences over existing tools, we first compared the performance of plm-utils models

against RNAsamba models (version 0.2.5). We chose to compare against RNAsamba

because it performed well across various prediction tasks when benchmarked against

other tools [19].

https://github.com/Arcadia-Science/2024-plm-utils


To assess model performance with diverse sequencing data, we selected a set of 16

species (Table 1) for which high-quality annotated reference transcriptomes were

available on Ensembl. We then trained models separately on transcriptomes from each

of the 16 species using the above-mentioned procedure. We used each of the

resulting 16 models to make predictions for each of the other 15 species. Note that we

did not split the transcriptomes into training and test sets; we trained models on all

transcripts from one species and then made predictions for all transcripts from each

of the other species.



Species Abbreviation
Common

name
Kingdom Class

Apis mellifera Amel Honey bee Animals Insects

Arabidopsis thaliana Atha Thale cress Plants Eudicots

Caenorhabditis

elegans
Cele Roundworm Animals Chromadore

Dictyostelium

discoideum
Ddis Slime mold Protozoa Mycetozoa

Drosophila

melanogaster
Dmel Fruit fly Animals Insects

Danio rerio Drer Zebrafish Animals Ray-finned fis

Gallus gallus Ggal Chicken Animals Birds

Homo sapiens Hsap Human Animals Mammals

Mus musculus Mmus Mouse Animals Mammals

Oryza indica Oind Rice Plants Monocots

Rattus norvegicus Rnor Rat Animals Mammals

Saccharomyces

cerevisiae
Scer

Baker’s

yeast
Fungi Saccharomyc

Schizosaccharomyces

pombe
Spom

Fission

yeast
Fungi Schizosacch

Tetrahymena

thermophila
Tthe

Ciliate

protozoan
Protozoa Ciliates

Xenopus tropicalis Xtro
Western

clawed frog
Animals Amphibians

Zea mays Zmay Corn Plants Monocots

Species used to train and evaluate plm-utils and RNAsamba models in the

task of predicting coding versus non-coding transcripts.

We performed this procedure for both plm-utils models and RNAsamba models. We

calculated the performance of each model using Matthew’s correlation coefficient, a

measure that quantifies the quality of binary classifications, ranging from −1 (perfectly

Table 1



wrong; worse than random) through 0 (no better than random) to +1 (perfect

prediction). The RNAsamba models (average MCC 0.51) slightly outperformed the plm-

utils models (average MCC 0.43) when trained and evaluated on all transcripts (Figure

1, A and C). However, the plm-utils models (average MCC 0.52) significantly

outperformed the RNAsamba models (average MCC 0.15) when the models were

trained and evaluated only on transcripts whose longest putative ORF was an sORF (<

100 amino acids) (Figure 1, B and D).





Comparison of species models trained by RNAsamba (A, B) or plm-utils (C,

D).

(A–D) Heatmaps of Matthew’s correlation coefficient (MCC) depicting the

performance of models trained with whole transcriptomes or short sequences (<

100 amino acids) alone. Model performance is plotted as 16 × 16 heatmaps in

which the x-axis corresponds to the species on which the model was trained and

the y-axis to the species on which model performance was evaluated. Higher

values (dark green) indicate more accurate predictions, while lower values (white)

indicate less accurate predictions.

(E–F) We subtracted the MCCs ( plm-utils MCC  − RNAsamba MCC ) to compare

the two approaches. Positive values (purple) indicate when plm-utils performed

better. While the two tools performed similarly for the general task of predicting

coding versus non-coding sequences, plm-utils outperforms RNAsamba for

predicting short coding sequences.

Our experimental setup comparing plm-utils and RNAsamba has two differences that

arise because the tools work differently. First, the models don’t use the same

sequence data to make predictions. Although both models predict whether a

transcript is coding or non-coding, the plm-utils models do so based on the amino-

acid sequence of each transcript’s longest putative ORF. In contrast, the RNAsamba

models do so based on the full nucleotide sequence of the transcript itself. Second,

the plm-utils models incorporate a correction for class imbalance (unequal numbers of

coding and non-coding transcripts in the training data) by using a balanced class

weight in the random forest classifier. This ensures that both classes are treated

equally despite their unequal proportions. The RNAsamba models don't include this

correction. Because many species contain relatively few coding transcripts whose

longest ORF is an sORF, this difference likely partially explains the difference in

performance we observed between plm-utils and RNAsamba models trained only on

transcripts whose longest putative ORF was an sORF. In addition, embedding sORFs

using ESM allows plm-utils to take advantage of information in a larger corpus of

protein sequences, even when there are very few input sequences.

Figure 1



Plm-utils generally predicts coding vs. non-

coding sORFs more accurately than other tools

Next, we assessed how well plm-utils performed on a challenging prediction task

compared to other tools. A recent large-scale benchmarking study identified 27,283

transcripts (16,243 coding; 11,040 non-coding) that were challenging for many tools to

classify as coding [19]. The authors named the dataset “RNAChallenge” and observed

an average accuracy of 10.8% (Figure 2). The protein-coding transcripts in this dataset

are shorter than the average transcript: approximately 80% of the ORFs on the

protein-coding transcripts were less than 300 nucleotides long, highlighting that most

tools struggle with classifying sORFs as coding or non-coding.

We first built a model to predict coding versus non-coding transcripts using diverse

species input. Using the same species listed in Table 1, we separated coding from

non-coding transcripts. We reduced homology between our input sequences by

clustering at 80% sequence identity using MMseqs2 (version 15.6f452) [27]. We then

used plm-utils to translate sequences, limiting to sORFs by filtering to transcripts with

a maximum predicted ORF of < 100 amino acids. We then embedded these

sequences and trained a model. We ran the plm-utils model on the RNAChallenge

dataset and calculated the performance (Figure 2). The F1 score, a metric that

balances precision (the accuracy of positive predictions) and recall (the ability to

identify all actual positive cases), is the highest for plm-utils. However, the

RNAChallenge dataset contains some sequences that are highly similar to some

sequences that we used to train the plm-utils model. While this was also true for

models and tools evaluated by the benchmark, we wanted to control for this in our

evaluation. We therefore removed sequences from RNAChallenge that were at least

80% similar to sequences used during training. This reduced the RNAChallenge

dataset to 16,180 sequences (8,847 coding; 7,333 non-coding). Evaluating the

performance on this dataset, the F1 Score decreased by ~6%. Plm-utils still

outperformed all but two tools covered in the benchmarking paper, longdist and

NCResNet (Figure 2) [28][29]. Both of these tools performed poorly on other

benchmarks that assessed their ability to predict coding vs. non-coding transcripts in

non-human species (regardless of transcript or ORF length) [19]. This likely indicates

over- or under-fitting to the RNAChallenge dataset and an inability to generalize well

across diverse biological datasets [19]. While we haven’t compared directly, we expect

plm-utils to perform better across species and sequencing contexts.



Performance of plm-utils and other

tools on the RNAChallenge dataset.

We produced the two rows reporting on

plm-utils while the rest of the rows

reporting on specific tools are copied

from Singh and Roy. We calculated the

“All tools*” row by averaging all values in

Table 1 of Singh and Roy; note that this is

not an average for values in this figure,

but for the 58 tool and model

combinations evaluated in an

independent benchmarking paper.

Taken together, we find that a

simple classifier built atop the

ESM2 large protein language

model improves the classification

of sORFs as coding or non-coding.

However, the overall performance

of plm-utils on the RNAChallenge

dataset is still low (~33%

accurate). This dataset is enriched

in sORFs, highlighting that there’s

still room for improvement on this

classification task. We think using

ESM embeddings captures

information about the secondary

structure of proteins, as large

protein language models have

previously been shown to have

high accuracy on structural

predictions for some peptides

[30]. This may mean this method

struggles with very short peptides

or peptides with certain structural

features. Indeed, evidence of

functional sORFs in the 3–15

amino acid length range suggests

we may be missing this class of

sORFs [6].

View the workflow code we

used to build the plm-utils classification model and evaluate its performance on

RNAChallenge.

Figure 2

https://doi.org/10.1093/nar/gkac1092
https://doi.org/10.1093/nar/gkac1092
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https://github.com/facebookresearch/esm/discussions/76#discussioncomment-723909
https://github.com/Arcadia-Science/peptigate/blob/v1.0.0/curate_datasets_and_build_models.snakefile


Additional validation

We built a pipeline, peptigate, that predicts and annotates peptides from

transcriptomes [31]. Peptigate uses plm-utils to predict sORF-encoded peptides.

While evaluating this pipeline, we ran plm-utils on the human transcriptome to identify

sORF-encoded peptides. We compared these results against orthogonal datasets like

databases of known peptides, ribosomal profiling, and strength of translation initiation

site sequences. We found orthogonal support for 22% of plm-utils predictions and

didn’t detect any false positives (true non-coding sequences predicted to be coding).

For more insights on plm-utils outputs and predictions, view those results here.

Methods
We used ChatGPT and GitHub Copilot to help write, clean up, and add comments to

our code. We also used ChatGPT to suggest wording ideas and then chose which

small phrases or sentence structure ideas to use.

Key takeaways

The plm-utils Python package is available in this GitHub repository.

The plm-utils Python package encodes a set of helper functions for working with

protein language models. It currently only works with Evolutionary Scale Model

(ESM), a protein language model trained on millions of protein sequences. It has

functions to embed sequences in ESM2, train a binary classifier using labeled

protein sequences, and predict the classification of new proteins using that model.

Our first use case for plm-utils is predicting whether a transcript is coding or non-

coding. We used plm-utils to predict coding versus non-coding transcripts in

general, as well as when the transcript encodes an sORF. sORFs are small open

reading frames of less than 300 bases that sometimes encode peptides.

In a set of diverse research organisms, plm-utils is outperformed by the state-of-

the-art tool RNAsamba for the general task of predicting coding versus non-coding

transcripts [plm-utils Matthew’s correlation coefficient (MCC) = 0.43; RNAsamba

https://research.arcadiascience.com/pub/resource-peptigate/
https://github.com/Arcadia-Science/2024-plm-utils/tree/v1.0.0


MCC = 0.51]. However, plm-utils significantly improves prediction when the

transcript encodes an sORF (plm-utils MCC = 0.52; RNAsamba MCC = 0.15). This is

likely due, in part, to latent information captured by protein language models.

Plm-utils also improves the prediction accuracy (33%) on a challenging dataset,

RNAChallenge, over most tools (average 11%).

Next steps
While plm-utils improves prediction accuracy over most tools, predicting the coding

potential of short sequences (< 100 amino acids) remains challenging. We would love

feedback or ideas on how to improve accuracy in this task, with or without using

protein language models.

We have several ideas to potentially improve accuracy:

1. Using larger models: We currently use the smallest model

(esm2_t6_8M_UR50D), but there are larger models available

(esm2_t48_15B_UR50D, esm2_t36_3B_UR50D, esm2_t33_650M_UR50D,

esm2_t30_150M_UR50D, esm2_t12_35M_UR50D). Other prediction tasks on

peptides haven’t seen improved accuracy with larger ESM models [2]. In

preliminary testing, we didn’t see an improvement in accuracy for sORF coding

prediction, but this should be more extensively tested and validated.

2. Exploring ESM3: The newly released ESM3 model [32] may offer potential

improvements. ESM2 was trained on 49.9 million protein sequences from

UniRef50 [33][34], while ESM3 was trained on 2.78 billion protein sequences [32].

These new sequences may improve ESM’s ability to encode information about

short sequences.

3. Refining training data sources: We used Ensembl for labeled training data

(coding vs. non-coding transcripts). Some transcripts initially labeled as non-

coding are later found to encode sORFs [35][36][37][38][39][40][41][42][43].

Building models that only include validated coding and non-coding transcripts

from diverse sources could improve model accuracy. However, this type of

curation task would likely take a substantial amount of time.



In the meantime, we plan to use plm-utils to identify sORF-encoded peptides in

transcriptome assemblies using the peptigate pipeline [31].
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