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Predicting bioactive
peptides from
transcriptome assemblies
with the peptigate
workflow

Peptigate predicts bioactive peptides from transcriptomes. It

integrates existing tools to predict sORF-encoded peptides,

cleavage peptides, and RiPPs, then annotates them for bioactivity

and other properties. We welcome feedback on expanding its

capabilities.
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Purpose

Peptides are small protein sequences (less than 100 amino acids in length) with

significant therapeutic and biotechnological potential due to their small size and the

wide variety of biological pathways they participate in. Despite these appealing traits,
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experimental discovery of peptides remains challenging, and computational tools

suffer from false positives.

In this pub, we introduce peptigate (peptide + investigate), a workflow that predicts and

annotates bioactive peptides from transcriptomes. Peptigate unites functions

previously distributed across different tools. It predicts small open reading frame

(sORF)-encoded proteins, cleavage peptides, and ribosomally synthesized and post-

translationally modified peptides (RiPPs) from transcriptomes. Peptigate then

annotates them for bioactivity, chemical properties, similarity to known sequences, and

signal peptide presence.

We used peptigate to predict peptides in the human transcriptome, resulting in 2,949

distinct peptides. Comparing these predictions against experimental datasets, we

validated an average of 23% of peptides (49% general cleavage, 20% RiPPs, 22%

sORF-encoded peptides). A major challenge during this project was the lack of gold-

standard data for validation, as peptide annotations are incomplete even for humans.

We used noisy and incomplete proxies like mass spectrometry peptidomics

databases and ribosomal profiling. With only a quarter of our predictions confirmed,

it's unclear whether mismatches arise from gaps in these data sources or incorrect

predictions. We welcome suggestions for more reliable ground truth data to improve

our pipeline's assessment.

We anticipate that peptigate may be a jumping-off point for new peptide discovery. For

example, if a researcher is interested in identifying peptides in a tumor

microenvironment, they might interact with peptigate as follows. First, the researcher

would identify a transcriptome or group of transcriptomes from their tumor and non-

tumor samples. Next, they’d run peptigate on the transcriptomes. Using the peptigate

output, they’d filter to peptides that are only present in the tumor samples or perform

differential expression analysis and retain transcripts that encode peptides that are

differentially expressed in the tumor microenvironment.

What else could they do with this information? The researcher could use the metadata

reported by peptigate to form a hypothesis about the cellular role of these peptides.

For example, if the peptides contain a secretory pathway-targeting signal peptide,

they're likely secreted and interact with other cells. Using these predictions, the

researcher could design wet-lab experiments to follow up on their research interests.



The context
Peptides are a diverse class of biological molecules present in all three domains of life.

They participate in activities like cellular signaling [1], chemical messaging [2], and

defense/immunity [3][4]. Peptide synthesis occurs via many pathways, including

ribosomal synthesis of small open reading frames (sORFs) [5], cleavage from

precursor proteins, and synthesis by non-ribosomal enzymes [6].

Due to their high specificity and potency, peptides are increasingly recognized for their

therapeutic and biotechnological potential. When compared to small molecules,

peptides offer the advantages of lower toxicity and relative ease of synthesis. However,

they often face challenges such as a short half-life and the requirement for non-oral

delivery methods to bypass digestive degradation and effectively reach target tissues

[7]. In contrast to other biologics like monoclonal antibodies, peptides theoretically

benefit from simpler synthesis processes, shorter research and development phases,

and faster regulatory approvals. Despite these advantages, peptides generally exhibit

lower stability during storage and handling, similar to the stability issues observed with

biologics, necessitating advanced formulation strategies to ensure efficacy.

What do you think?

If you think this example resonates with work you’re doing, we’d love to hear about

it and possibly help. We are also open to learning about other peptigate use

cases that others come up with.

This pub is part of the project, “Software: Implementing useful and innovative

computing.” Visit the project narrative for more background and context.

The peptigate pipeline is available in this GitHub repository.

The code and associated data we used to evaluate the peptigate pipeline are

available in this GitHub repository, including the results and evaluation of running

peptigate on the human RefSeq transcriptome.

https://research.arcadiascience.com/software
https://research.arcadiascience.com/software
https://github.com/Arcadia-Science/peptigate/tree/v1.0.0
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0


Our working definition of “peptide”

While the definition of a peptide varies, for this pub, we’ll define peptides as small

polypeptides comprised of 2–100 amino acids with standalone biological activity.

We refer to these peptides as “bioactive” to denote their distinct physiological

functions, unlike peptide fragments from protein degradation or those that don't

function independently, such as intermediary or cleaved signal peptides [8][9].

The problem

Endogenous peptide discovery is difficult, especially when predicting many peptides

from many species. Before the advent of DNA sequencing technologies, peptide

discovery was primarily an experimental endeavor. Early discoveries in the first half of

the 20th century focused on single peptides implicated in specific biological actions

[10][11][12][13]. Advances in chromatography and mass spectrometry ushered in a

high-throughput discovery era via peptidomics [14][15]. Discoveries facilitated by

these technologies as well as genome sequencing highlighted the underappreciation

of peptides as a biological class [16].

In the intervening decades, further refinement of these technologies and appreciation

of different ways peptides are synthesized endogenously have led to more discoveries

of peptides [17][18]. Even still, blind spots persist. Some peptides are only present

under hyper-specific conditions [19], while peptidomics and ribosomal profiling

require expensive infrastructure and expertise and may require sample-specific

preparation techniques that limit usability for new sample types [20][21][22][23].

Computational tools address this experimental bottleneck by predicting peptides from

genomes and transcriptomes [17]. Sequencing data in particular is amenable to

peptide discovery because it can be analyzed in many different ways, which fits with

the natural diversity of peptides themselves; multiple tools can detect different types

of peptides. However, detecting peptides from sequencing data is still fairly

challenging. Apart from the many different kinds of peptides, the short nature of

peptide sequences makes them difficult to detect and makes detection susceptible to

false positives [5].



Our solution

We introduce peptigate, a workflow that applies previously developed best-in-class

tools to predict and annotate diverse bioactive peptides from transcriptomes (Figure 1).

“Peptigate” is a portmanteau of peptide and investigate. Peptigate currently predicts

sORF-encoded proteins, cleavage peptides, and ribosomally synthesized and post-

translationally modified peptides (RiPPs). These peptides are then annotated to predict

bioactivity, chemical properties, similarity to known peptide sequences, and the

presence of a signal peptide. These functions were previously scattered in disparate

tools; peptigate unites them to make diverse peptide prediction simpler.

For multiple reasons, we chose to use transcriptomes as the input. RNA-seq data, and

thus transcriptome assemblies, are comparatively more available than genomes,

especially for less developed research organisms. Transcriptomes are also smaller

and have a higher ratio of gene content than genomes, which reduces false positives

in peptide discovery. However, to make peptigate more flexible, we also provide a

reduced pipeline that takes predicted protein sequences as input.



An overview of the peptigate workflow for predicting bioactive peptides.

Peptigate takes a transcriptome assembly and open reading frames (ORFs)

predicted from the transcriptome contigs as input. It uses these files to predict

sORF peptides with plm-utils, cleavage peptides with DeepPeptide, and RiPP

peptides with NLPPrecursor. Predicted peptides are then annotated for

bioactivity using AutoPeptideML, compared to known peptides in the

metadatabase Peptipedia, annotated for signal peptides with DeepSig, and

chemical properties calculated with the Python package peptides.py. The

peptide prediction and annotation outputs are reported in a pair of TSV files. The

predicted peptide sequences are also provided in nucleotide (FFN) and amino

acid (FAA) format for convenience. We’ve omitted many intermediate steps in the

workflow to focus on the parts of the workflow that perform predictive tasks.

The resource

The peptigate pipeline is available in this GitHub repository (DOI:

10.5281/zenodo.12775316).

Figure 1

https://github.com/althonos/peptides.py
https://github.com/Arcadia-Science/peptigate/tree/v1.0.0
https://doi.org/10.5281/zenodo.12775316


Peptigate is a Snakemake pipeline that combines existing tools to predict bioactive

peptides from transcriptomes. Below, we highlight how each part of peptide prediction

works, covering sORF, cleavage, and RiPP peptide prediction and annotation.

Predicting small open reading frames

Background on sORFs

Small open reading frames (sORFs) encode peptides that are short upon synthesis

[24] (rather than cleaved later). They’re also known as "short" open reading frames

[25]. The functional peptide products are referred to as sORF-encoded polypeptides

(SEPs or sPEPs), microproteins, or micropeptides [26]. DNA transcription and

ribosomal translation from open reading frames 300 nucleotides or shorter produces

these peptides. Most sORFs use non-traditional start codons like UUG, CUG, GUG,

and ACG, each of which differs by one nucleotide from the start codon AUG [27].

While most genomes contain many sORFs, only a few are actively translated and

transcribed. Most transcribed sORFs are within a transcript's 5′ or 3′ UTR of the

primary coding domain sequence (uORF and dORF, respectively). They often play

regulatory roles by influencing the translation of the mRNA [5]. However, some sORFs

encode peptides that are translated into functional small proteins. The majority of

these sORFs have been identified in what were presumed to be long non-coding RNAs

[5][28].

How peptigate predicts sORFs

The peptigate pipeline targets sORFs on contigs without longer ORFs to identify

sORFs that encode functional peptides (as opposed to translation regulators). The

pipeline begins sORF prediction by removing contigs in the transcriptome assembly

that have predicted open reading frames (supplied by the user). Next, the pipeline tries

to remove fragmented contigs that likely contain longer open reading frames by

comparing each remaining transcript against the UniRef50 database using DIAMOND

blastp  [29]. If a contig has a match to a protein in UniRef50 that's longer than 300

nucleotides, we remove these transcripts. Peptigate then scans the remaining contigs

for open reading frames using common sORF start codons (AUG, UUG, CUT, GUG, and

ACG [27]) and retains all predicted ORFs 300 nucleotides or shorter. It then predicts



whether each sequence is coding or non-coding using the Python package plm-utils

[30]. Plm-utils uses latent information in the large protein language model

Evolutionary Scale Modeling (ESM) [31][32] to determine whether a short open reading

frame is coding or non-coding [30].

Predicting cleavage peptides

Background on cleavage peptides

Cleavage peptides are generated by enzymatic cleavage (proteolysis) of precursor

proteins. These peptides are initially ribosomally translated while embedded in the

precursor protein and then cleaved to become biologically active. Peptides can be

proteolytically released from proteins by specific [33] or general proteases [34] or

receive additional modifications after cleavage [35]. Cleavage peptides participate in

a variety of biological tasks, including stress response (corticotropin-releasing

hormone), blood sugar regulation (insulin and glucagon), blood clotting (thrombin), and

inflammation (C3a), and phagocytosis (C3b).

Cleavage peptides are different from propeptides and proteolytic degradation

products. Propeptides are parts of proteins that are cleaved during protein maturation

and don’t have a biological function once cleaved. Similarly, proteolytic degradation

products are generated by the ubiquitin or lysosomal pathways and mostly don't

generate functional products, although individual amino acids are often recycled for

new protein synthesis [36][37].

How peptigate predicts cleavage peptides

The peptigate pipeline predicts two classes of cleavage peptides: cleavage peptides

with protease cut sites as well as ribosomally synthesized and post-translationally

modified peptides (RiPPs). Peptigate uses the DeepPeptide tool to identify cleavage

peptides with protease cut sites [38]. DeepPeptide is built atop the ESM2 large protein

language model [31][32] and predicts peptides and propeptides from protein

sequences. The peptides range in length from 5–50 amino acids.

Peptigate uses NLPPrecursor for RiPP prediction [39]. NLPPrecursor was trained

using only bacterial RiPP sequences and thus may work best when run on bacterial

https://www.uniprot.org/help/propep


protein sequences [39]. However, many cyclic eukaryotic peptides are RiPPs [40].

When run against eukaryotic protein sequences, we think it's possible that the RiPP

peptides detected were once horizontally transferred from bacteria to eukaryotes;

however, we haven't followed up on this hypothesis.

Annotating predicted peptide sequences

Functional annotation of peptide sequences is difficult for many reasons. Most protein

functional annotation tools use sequence similarity or orthology to compare new

protein sequences to proteins of known function. These methods often generate

statistically unreliable results when applied to short sequences; for short sequences,

sequence similarity comparisons typically only work to find matches that are very

similar to sequences that have already been discovered [41]. In some species,

peptides encoded by sORFs are under lower purifying selection [42], or they’re

evolutionarily young so they’re not present in other closely related species [25],

decreasing sequence similarity.

Moreover, peptides can exhibit varied functions in different biological contexts due to

their ability to adopt multiple conformations [43], which complicates functional

annotation based solely on sequence similarity. Because some peptide functions,

such as antimicrobial activity, are easier to assay, these functions may improperly

propagate even though they don't reflect in vivo functions [44].

Peptigate attempts to overcome these challenges by annotating predicted peptide

sequences using multiple approaches. First, peptigate compares against known

peptide sequences by BLASTing each predicted peptide sequence against the

Peptipedia database using DIAMOND blastp  [29][45][46]. Peptipedia is a

metadatabase with peptide sequences from 76 databases encompassing 213

bioactivities (as of March 23, 2024). Peptigate reports the top match for each peptide.

Next, peptigate annotates signal peptides in predicted peptide sequences using

DeepSig [47]. Signal peptides are short peptide sequences (16–30 amino acids long)

that mark proteins for secretion [48]. Signal peptides can provide clues as to the

function of a protein depending on the presence and the class of the signal peptide

[49].

https://app.peptipedia.cl/


Peptigate predicts the function of predicted peptide sequences using AutoPeptideML

[50]. AutoPeptideML is a tool that allows users to build and use models for peptide

bioactivity prediction through machine learning best practices. It uses the ESM large

protein language model (ESM2-8M) internally to improve prediction accuracy [31][32].

Currently, peptigate uses 16 models built in the AutoPeptideML preprint (antibiotic,

anticancer, ACE inhibitor, antifungal, anti-MRSA, antimalarial, antimicrobial,

antioxidant, antiparasitic, antiviral, blood-brain barrier crossing, neuropeptide, quorum

sensing, toxic, and tumor t-cell antigen) [50]. However, the Matthews correlation

coefficient of these models ranges from approximately 0.02 to 0.73, indicating a wide

performance range and a general inability to predict peptide bioactivity. Nevertheless,

this approach is state-of-the-art, so we’ve included it in the peptigate pipeline.

Peptigate also calculates peptide chemical characteristics using the Python package

peptides.py. Peptigate calculates metrics like molecular weight, charge, and

hydrophobicity. These attributes can be used to compare peptides or to assess

whether a given peptide is suitable for a downstream task (e.g., removing hydrophobic

peptides because they’ll be difficult to synthesize).

Last, peptigate determines the nucleotide sequences that encode the predicted

peptide protein sequences. The nucleotide sequences are three times as long as the

amino acid sequences, which can improve sequence searches against large

databases and other comparisons. Peptigate doesn't use these sequences directly for

annotation, but they're provided to the user as an output so they can be further

analyzed (e.g., via sequence similarity clustering with MMseqs2 [51]).

We think there's still room for improvement in our approach to peptide annotation,

especially for bioactivity prediction. We welcome feedback or suggestions on how to

improve our approach.

Limitations of the peptigate pipeline

While we tried to generate a comprehensive tool, peptigate is still limited. Below, we

outline specific tasks that peptigate doesn't yet perform and highlight why including

these approaches is difficult.

Peptigate doesn't predict non-bioactive peptides. It's focused on predicting bioactive

peptides, so it doesn't predict degradation products from the ubiquitin or lysosomal

https://github.com/althonos/peptides.py


degradation pathways or digestion (e.g., tryptic cleavage). It also doesn't predict sORFs

that occur in the 5′ or 3′ UTR of longer ORFs, as most of these sORFs regulate the

translation of the transcripts they occur in and don't have bioactivity beyond this niche

role [5].

There are also some classes of bioactive peptides that peptigate doesn't yet predict.

In particular, peptigate doesn't predict nonribosomal peptides synthesized by

nonribosomal peptide synthetase(s) (NRPSs). NRPSs synthesize peptides

independent of messenger RNA and ribosomes. Each enzyme typically contains

multiple catalytic domains that help accomplish a specific peptide synthesis step.

Multiple NRPS enzymes are usually required to synthesize a peptide, and these

enzymes are usually co-located together in the genome (and co-expressed on

polycistronic transcripts in the case of bacteria). We didn't include NRPS prediction in

peptigate because we were unsure how to identify which NRPS enzymes belong to a

single NRPS peptide. We were also unsure if we'd be able to predict the peptide

sequence generated through this mechanism.

There are also several annotation tasks that peptigate doesn't currently perform. In

general, we omitted tools that are only accessible through a browser, don't have

commercial-compatible licenses, or aren’t easily installable through a package

manager or a container. We considered including the tools DeepLoc to predict the

sub-cellular localization of a peptide [52], PeptideRanker to assess the likelihood that

a peptide is bioactive [53], and PepScore to assess whether a peptide is stable in

humans [54], but ultimately didn’t include them. We're also interested in predicting the

immunogenicity of peptide predictions but didn't find an accurate tool for this.

Peptigate pipeline inputs and outputs

The peptigate pipeline takes three user-provided input files: a transcriptome assembly

and annotated ORFs from that assembly in both amino acid and nucleotide format.

These files are then used to predict sORF and cleavage peptides.

Peptigate also relies on databases and models. These are either packaged in the

peptigate repository or the pipeline downloads them. The sORF prediction tool plm-

utils, the cleavage peptide prediction tool NLPPrecursor, and the bioactivity annotation

tool AutoPeptideML all require model weights. The plm-utils model is packaged in the

peptigate GitHub repository, while the pipeline downloads the AutoPeptideML and

https://services.healthtech.dtu.dk/services/DeepLoc-2.0/
http://distilldeep.ucd.ie/PeptideRanker/
https://github.com/zhejilab/PepScore


NLPPrecursor models. Peptigate also downloads the two databases on which it

depends, UniRef50 and Peptipedia. Once downloaded and prepared, the peptigate

pipeline will use these same files repeatedly unless they're moved or changed.

Peptigate outputs six files, two FASTA files, and four TSV files. The two main outputs

are a pair of TSV files, “peptide_predictions.tsv” and “peptide_annotations.tsv.” The

predictions file provides the peptide identifiers, sequences, and the tools that

predicted each peptide. The second annotation file provides information from each

annotation approach discussed above. The FASTA files and the partner TSV files

provide the predicted peptides’ amino acid and nucleotide sequences.

We also adapted peptigate to run when the user only has protein sequences as input.

In this scenario, peptigate predicts sORF proteins by length-filtering to proteins less

than 100 amino acids. Cleavage peptide prediction and annotation proceed as in the

main pipeline, although without nucleotide reporting.

Evaluating the peptigate pipeline

The code and associated data we used to evaluate the peptigate pipeline are

available in this GitHub repository (DOI: 10.5281/zenodo.13239486), including the

results and evaluation of running peptigate on the human RefSeq transcriptome.

We used peptigate to predict peptides in the human transcriptome to understand the

tool’s accuracy. Starting from the human RefSeq transcriptome (click here to download

the transcriptome), we predicted open reading frames using TransDecoder. We

recognize that this approach doesn't fully take advantage of existing annotations for

the human transcriptome, but it matches our recommended preprocessing for

peptigate. Peptigate predicted 4,235 distinct peptides in the human transcriptome

(Table 1). After removing DeepPeptide-predicted propeptides — a part of a protein

cleaved during activation or maturation that lacks independent function — 2,949

peptide sequences remained.

We next wanted to evaluate the accuracy of these predictions. Because not all human

peptides have been annotated, we lacked a ground truth against which to compare our

peptide predictions. We decided to compare the predicted peptide sequences against

orthogonal data sources such as databases of previously observed peptides, public

https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0
https://doi.org/10.5281/zenodo.13239486
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.40_GRCh38.p14/GCF_000001405.40_GRCh38.p14_rna.fna.gz
https://github.com/TransDecoder/TransDecoder


annotations, and ribosomal profiling data. We reasoned that if we observed matches

between these data sources and our predictions, this would provide evidence that the

peptide is likely real. However, this approach is flawed because any disagreement

could mean that databases are incomplete, our predictions are at least partially wrong,

or some combination of the two. Even still, we moved forward with this approach

because we were unable to identify a better gold standard dataset for evaluation.

Prediction

tool within

peptigate

pipeline

Number

of

predicted

peptides

Peptipedia
NCBI

metadata
RibORF

Total

(distinct)

DeepPeptide

(predicts

cleavage

peptides)

263 130 NA NA 130 (49%)

NLPPrecursor

(predicts

RiPPs)

431 87 NA NA 87 (20%)

plm-utils

(predicts

sORFs)

2,255 291 287 288 486 (22%)

Total 2,949 508 287 288 703 (24%)

Summary of peptides predicted by peptigate and orthogonal validation

information.

“NA” indicates that orthogonal information wasn't available. “Distinct” refers to

distinct amino acid sequences; each sequence is counted once even if it’s

validated by multiple datasets. It represents the fraction of predicted peptides

validated by orthogonal datasets.

We started by comparing peptigate’s predictions to peptides in the Peptipedia

database [46]. Peptipedia is a metadatabase comprised of peptides from 76

databases, including human peptide-containing databases like Peptide Atlas [55].

Using the annotation results generated by the peptigate pipeline, we checked whether

the predicted peptides had a hit against any peptide in Peptipedia. More cleavage

peptides had hits to peptides in Peptipedia than sORF peptides: 49% of peptides

Table 1

https://app.peptipedia.cl/
https://peptideatlas.org/


predicted by DeepPeptide, 20% of peptides predicted by NLPPrecursor, and 13% of

peptides predicted by plm-utils had hits against at least one peptide in the database

(Table 1). Our findings suggest that at least one-quarter of peptigate-predicted

peptides are likely real.

View the analysis code we used to investigate peptide matches against the

Peptipedia peptide database.

For cleavage peptides, we expected to predict more peptides than are present in

databases because the DeepPeptide paper predicted 1.3× the known number of

peptides in humans (352 in UniProt, 458 predicted) [38]. To determine whether

predicted cleavage peptides that didn't have matches in the Peptipedia database

might still be real, we looked for signals associated with cleavage peptides. For

example, most (but not all) annotated cleavage peptides are cleaved from precursor

proteins that contain an N-terminal signal peptide [56]. Signal peptides target a

protein to the secretory pathway and allow cleaved peptides to reach their final

destination [57]. Many cleavage peptides function as hormones or other signaling

molecules, making export from the cell a key step in their biogenesis [57]. Of the 133

predicted peptides with no BLAST hit, 28 are predicted from precursor proteins with

signal peptides. We also investigated whether the precursor proteins contained

propeptides, as many precursor proteins contain these constructs that help with

protein folding, stability, or targeting [58]. A further eight precursor proteins contained

propeptides. These results suggest that some cleavage peptide predictions that didn't

match known peptides are biologically plausible.

View the analysis code we used to identify signal peptides and propeptides in the

precursor proteins of cleavage peptides.

We anticipated that sORF-encoded peptides would have a lower hit rate than cleavage

peptides when compared against peptides in databases. While Peptipedia contains 76

databases, it doesn’t include dedicated sORF catalogs like sORFs.org [59]. Further,

cleavage peptides were discovered many decades before sORF-encoded peptides

[60][61][62][63], and so we expect more cleavage peptides to be annotated than

sORFs. In addition, many sORFs are thought to be evolutionarily young [25], meaning

we wouldn’t expect homology to peptides from other species. Even still, because so

https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/peptipedia
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/peptipedia
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/cleavage_signal_peptides
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/cleavage_signal_peptides
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/cleavage_signal_peptides


few sORF-encoded peptides had matches against the Peptipedia database, we next

focused on validating this class of peptide predictions.

We first looked at the annotations for each transcript. Since we started with a RefSeq

transcriptome, all transcripts are labeled as curated coding, curated non-coding,

predicted coding, or predicted non-coding by their accession number. Of the 2,255

predicted sORF-encoded peptides, 13% are labeled as curated coding (Table 1). We

anticipate that many more transcripts are actually coding; recent research has shown

that many transcripts labeled as non-coding actually contain sORFs that encode

peptides [64][65][66][67][68][69][70][71][72]. However, the observed overlap

validates a subset of our sORF predictions and demonstrates that the Peptipedia

database is partially incomplete with regard to sORF-encoded peptides with known

coding potential.

Given that Peptipedia is incomplete with regards to sORFs, we tested how many

predicted sORF-encoded peptides are supported by ribosomal profiling data.

Ribosome profiling data is generated by sequencing fragments of mRNA that are

protected by ribosomes, offering a snapshot of translation in action [73] — if one of our

predicted sORF-encoded peptides appears in a ribosome profiling dataset, it would

lend credence to the idea that this is a real, translated peptide. A recent set of papers

developed a tool called RibORF that predicts open reading frames from ribosomal

profiling data and uses this tool to re-analyze over 600 ribosomal profiling datasets

from humans [54][74]. 13% of sORF-predicted peptides overlapped with RibORF

predictions (Table 1), 265 (189 canonical, 61 non-coding, nine extension, and six

truncation). This overlap supports the idea that these sORFs are translated into

proteins.

View the analysis code we used to compare sORF-encoded peptides against

ribosomal profiling data.

The fraction of sORF-predicted peptides that appeared in ribosomal profiling data

underwhelmed us, so we tried to validate these sequences using other orthogonal

datasets. First, we checked whether peptigate predicted true non-coding RNAs as

coding. Of the three we tested (XIST, HOTAIR, NEAT1), peptigate predicted none to be

coding. These findings confirm that peptigate effectively discriminates between

coding and non-coding RNAs.

https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/riborf
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/riborf
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/riborf


View the analysis code we used to search for non-coding RNAs in sORF-

encoded peptides.

We next wanted to measure the relative translation potential of the predicted sORFs. If

an sORF is able to recruit a ribosome for translation, it's potentially more likely to be

translated into a protein. To estimate translation potential, we measured the Kozak

sequence similarity score for each predicted sORF and compared the distribution

against ORFs > 300 nucleotides in the human transcriptome. The Kozak consensus

sequence functions as a translation initiation start site and enhances translation

efficiency by directing ribosomes to the correct start codon [75]. Six base pairs occur

upstream and one base pair downstream of the start codon in a transcript [75]. The

exact sequence varies, so each Kozak sequence can be scored in comparison to the

most common sequence motif [76]. We scored each Kozak sequence as performed in

[76]: using the sequence motif GccA/GccAUGG, we designated upper-case letters as

highly conserved (scored +3) and lower-case letters as common (scored +1). We didn't

score the start codon (bolded letters). The maximum score is 13. On average and

across transcript types (inherited from RefSeq labels), sORFs have lower Kozak

sequence scores than other transcripts (Welch’s two-sample t-test, estimate = 1.4, p <

0.001, 95% CI [0.8, 1.07]). However, the sORF Kozak sequence scores occurred within

the same range as those of other transcripts, with both coding and non-coding

sequences achieving the maximum Kozak sequence score of 13. Given the range of

Kozak scores observed, these results suggest that some predicted sORFs are likely to

recruit ribosomes and be translated into proteins.

View the analysis code for calculating and comparing Kozak sequence scores in

sORF-encoded peptides versus normal open reading frames.

Overall, we struggled to identify a gold-standard, ground-truth dataset to use when

evaluating peptigate. It's unclear to us what a "good" expected hit rate is against

different orthogonal datasets. We expect some hits, as we'd expect some fraction of

our predicted peptides to have been previously discovered. However, it's unclear how

many bioactive peptides exist or how many have been discovered. A peptidomics

mass spectrometry and machine learning paper published in 2022 suggested that, to

date, only 300 peptides in humans have confirmed bioactivity [56], so our predictions

aren't many orders of magnitude away from what we might expect, and there may be

https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/noncoding_rnas
https://github.com/Arcadia-Science/2024-peptigate-evaluation/tree/v1.0/evaluation/noncoding_rnas
https://github.com/Arcadia-Science/2024-peptigate-evaluation/blob/v1.0/evaluation/kozak_scores/20240614-compare-kozak-scores.ipynb
https://github.com/Arcadia-Science/2024-peptigate-evaluation/blob/v1.0/evaluation/kozak_scores/20240614-compare-kozak-scores.ipynb


room for new human peptide discovery. We welcome suggestions for different

validation datasets that can be used to validate computational peptide predictions.

Additional methods

We used ChatGPT to help refactor some Python scripts executed by the Snakefile,

write first drafts of doc strings, and clean up character lines to reduce them to under

100 characters. We also used ChatGPT and Notion AI to suggest wording ideas, and

then we chose which small phrases or sentence structure ideas to use.

Key takeaways
�. Peptigate is a workflow for predicting and annotating bioactive peptides from

transcriptomes. It combines existing state-of-the-art tools to predict peptides

encoded by small open reading frames and cleavage peptides. It annotates

predicted peptides to provide insights into their potential function.

�. Peptigate is designed to better inform researchers as they make decisions about

follow-up functional studies. This may require multiple peptigate prediction runs

across diverse transcriptomes or additional prediction tasks. For example, if a

researcher is interested in a specific bioactivity that isn't tested in peptigate, it

may be useful to build additional bioactivity prediction models with

AutoPeptideML.

�. Only about a quarter of peptigate predictions match peptides predicted in

orthogonal datasets, highlighting a need for more comprehensive and reliable

validation methods and datasets.

Next steps
�. Identifying ground-truth data. One of the things we struggled with during this

project was a lack of gold-standard data for prediction. Given that peptide

annotations are incomplete, even for the human genome and proteome, it wasn't

clear what to use as ground truth, true positive, and true negative data. We used

orthogonal datasets like mass spectrometry peptidomics databases and



ribosomal profiling as proxies, but these datasets are noisy and incomplete. We'd

love new ideas for ground truth data we can use to assess our pipeline.

�. Improving bioactivity annotations. Bioactive peptides participate in almost all

aspects of metabolism, making them interesting for both basic and translational

research. Even if we can produce confident peptide sequence predictions, it’s

difficult to computationally predict the bioactivity of those sequences because of

their short length. We're interested in identifying new tools or orthogonal tests that

we can incorporate into peptigate to improve bioactivity annotations.

�. Including more tools for peptide prediction and annotation. As described in

the “Limitations…” section above, peptigate doesn't predict all types of peptides or

incorporate all possible annotation tools. We'd like to expand the types of peptides

and annotations included if we can overcome the challenges outlined in the

limitations section.

�. Making the pipeline easier to use. We wrote peptigate as an experimental

pipeline. While we tried to assemble a reasonable pipeline, we identified many

areas where we could improve the quality of our software engineering. If peptigate

proves useful, we plan to improve the quality of the software by adding things like

installation from a package manager and automated tests.
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