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Automated classification
of time-course imaging
data applied to nematode
embryogenesis

Machine learning is a powerful tool for classifying images in a time

series, such as the developmental stages of embryos. We built a

classifier using only bright-field microscopy images to infer

nematode embryonic stages at high throughput.
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Purpose

We’re broadly interested in extracting biological function from label-free, high-

throughput imaging data. As a first pass, we tested the effectiveness of a deep-

learning framework that incorporates temporal information in classifying the

developmental stage of the well-studied nematode, Caenorhabditis elegans. We

trained a classifier that you can use to identify nematode embryo stages from time-

course datasets captured using bright-field microscopy. We hope this tool will be

http://localhost:4321/user/prachee-avasthi
http://localhost:4321/user/feridun-mert-celebi
http://localhost:4321/user/keith-cheveralls
http://localhost:4321/user/seemay-chou
http://localhost:4321/user/amro-hamdoun
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/ilya-kolb
http://localhost:4321/user/david-q.-matus
http://localhost:4321/user/shalin-mehta
http://localhost:4321/user/david-g.-mets
http://localhost:4321/user/harper-wood


We’ve put this effort on ice! �

#StrategicMisalignment

We considered building on this initial effort by predicting likelihood of embryo

hatching, but we’d mostly intended the project as an internal exercise in how to

build and train a classifier on a visual dataset. We ultimately decided that

continuing this particular project wasn’t a high priority relative to other work.

Background
For most organisms, the effort and expense of genetic or antibody-based labeling for

the purpose of imaging is very high, requiring dedicated team effort and resources. We

immediately useful to interrogate embryonic development, reproductive success, or

developmental outcomes following perturbations in C. elegans or other free-living

nematode species. More broadly, you can adapt our approach to any category of

classifiable microscopy time-course data. To this end, we provide a PyTorch-based

pipeline for training and evaluating your own models.

The tool lets you go from imaging nematode embryos to classifying developmental

stages and quantifying the frequency of successful versus unsuccessful

developmental outcomes. It’s about 80% accurate in calling the correct stage. We’re

not pursuing this project further but welcome your input and encourage others to

incorporate user feedback to improve the functionality of the classifier if it’s useful to

you.

Our code in Python is available in this GitHub repository.

The data we used in our training, validation, and experimentation are on Zenodo.

Learn more about the Icebox and the different reasons we ice projects.

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://zenodo.org/records/10211684
https://research.arcadiascience.com/icebox


want to develop tools that we can readily apply to many organisms, allowing new

understanding of evolutionary solutions to biological problems. In line with this

overarching goal, we set out to leverage the information in label-free images for

phenotyping in a scalable, automated fashion. More broadly, we’d like to understand

the extent to which we can use label-free imaging across as large a swath of the tree

of life as possible to extract phenotypic information and map traits wherever we find

novelty.

Combining deep learning with high-throughput live imaging has the potential for broad

impacts on many fields of biology, scaling from cells to organisms. For example, deep

learning approaches to cell type identification [1][2] and cell health [3] have the

potential to be transformative. Applying these methods to label-free data [4][5][6]

decreases experimental cost and increases our ability to explore organismal diversity.

Developmental biology is ripe for the application of deep learning approaches to

facilitate discovery and unlock translational potential [7]. The study of developmental

biology has provided fundamental insights into multicellular life at the intersection of

genetics, molecular, cellular, and evolutionary biology. Seeing where development

goes awry allows us to understand the molecular underpinnings of disease, from

developmental disorders leading to birth defects [8][9] to the origins of cancer [10].

Not surprisingly, there are concerted efforts at improving the outcomes of in vitro

fertilization by applying deep learning strategies to human embryo health and viability

[11][12].

During embryogenesis, multicellular organisms pass through discrete developmental

stages, including fertilization, cleavage, morphogenesis, and organogenesis,

ultimately hatching into their environment. Animal development is characterized by

sets of shared and species-specific features. For example, following fertilization, most

animal embryos undergo a series of rapid cell divisions. At some point during this

cleavage period, cells undergo a suite of morphogenetic changes as embryo

patterning results in tissue-layer organization through the process of gastrulation.

While embryos from many different organisms may share similar-looking cleavage

stages, within specific lineages there are often unique morphologies characteristic of

distinct taxonomic groups — animal embryos that look similar at cleavage stages

might look very different during gastrulation. These species-specific differences only

compound as development continues. Thus, there is a need for automated tools to

classify key embryonic stages to unlock high-throughput approaches to

developmental biology.



Finally, to fully understand the development of a particular organism, we need to be

both descriptive and mechanistic. The most common way of accomplishing this is by

perturbing the system, from traditional mutagenesis to drug screening. If we can

devise approaches that take advantage of inherent properties, such as the data we get

from label-free light microscopy methods (e.g., bright-field, DIC, phase contrast, etc),

we can maximize our ability to perform these experiments at scale, across the tree of

life, as we don’t have to invest in bespoke genetic labeling tools for each new research

organism.

The strategy
As a first step toward a longer-term goal of high-throughput image-based phenotyping

across species, we decided to develop an image analysis pipeline for training a neural

network to classify developmental stages with high accuracy and minimal human

intervention from bright-field movies.

We selected the well-studied nematode, Caenorhabditis elegans, as a test case for

automated phenotyping because it has a well-defined embryonic lineage and easily

observable morphological stages, undergoes rapid embryonic development to a free-

living larva, and has a large scientific community that leverages these many strengths

for biological discovery. Despite many differences in early embryo patterning between

nematode species, key developmental stages appear conserved [13][14], so we also

wanted to explore whether a classifier trained on C. elegans development would work

out-of-the-box on related nematode species, unlocking future evolutionary

comparative studies.

The problem

To fully leverage high-throughput experimental approaches that involve imaging, we

need automated image processing and analysis workflows. High-throughput

experiments involving time courses often consist of large (100+ GB) datasets that

require lengthy data curation and annotation before analyses can even begin. We set

out to establish a method for classifying embryonic stages from bright-field image

data; a modality that does not require the use of species-specific labeling tools.



Previous attempts to generate a nematode classifier required technological

innovations in microfluidic approaches to isolate individual embryos and relied on

reporter transgenes to properly orient the embryo [15]. In contrast, we wanted to

create a classifier that performs robustly irrespective of embryo orientation and solely

using bright-field microscopy, to allow for comparative studies in organisms lacking

genetic tools.

Our solution

As a proof-of-principle, we built an automated, high-throughput, experimental, and

computational workflow to image and classify the embryonic stages of C. elegans.

Our workflow includes (1) optimizing high-throughput embryo collection and imaging,

(2) embryo segmentation, and (3) classification of known stages of nematode

development as well as the detection of unfertilized oocytes and embryonic lethality. In

constructing this pipeline, we’ve built a trained classifier to recognize label-free bright-

field images of C. elegans embryonic stages, based on the original descriptions by

John Sulston (1942–2018), who generated the first embryonic lineage map of a

multicellular organism. We trained a model based on manual ground truth annotations

using the ResNet-18 neural network architecture [16]. Our classifier achieves

approximately 80% accuracy, accounting for class imbalances, for classifying embryo

developmental stages, independent of embryo orientation. To test our nematode

classifier and to extend the utility of this tool, we used it to quantify the embryonic

lethality associated with induced environmental stress from heat shock and osmotic

stress and tested its ability to correctly classify embryonic stages of related nematode

species.

We anticipate that this pipeline will be useful in collecting population-level details

related to reproductive success or embryonic lethality in phenotyping following

perturbation (e.g., RNA interference or traditional mutagenesis screens). More

generally, we’re excited by the potential of taking this approach to classify other kinds

of time-course data. We hope you’ll be able to apply our workflow for your own time-

course data and would love to hear how it goes, so please drop us a comment if you try

it!



The resource

Building a classifier for nematode embryo

stages

We created a classifier to facilitate the characterization of C. elegans embryonic

phenotypes in high-throughput time-course imaging data. In this pub, we summarize

how we trained our model. We also describe the CLI that you can use to adapt the

model to your imaging data acquired with different contrast, resolution, or

magnification (see pipeline documentation).

This first section provides a brief overview of the workflow (Figure 1), from collecting the

data to using the computational pipeline to classify and extract labeled time-course

data for downstream analyses. To see the classifier in action, jump to “Using the

classifier for high-throughput studies of nematode development.”

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/blob/v1.0/README.md
https://research.arcadiascience.com/pub/resource-nematode-classifier#using-the-classifier-for-high-throughput-studies-of-nematode-development
https://research.arcadiascience.com/pub/resource-nematode-classifier#using-the-classifier-for-high-throughput-studies-of-nematode-development


Overview of workflow to train and use our nematode classifier.

(1) We collect embryos by hypochlorite treatment and dispense into 384-well

glass-bottom plates (2) for imaging (3). Post-acquisition, we convert files into

the ome-zarr format (4) and then segment and crop individual FOVs (5) in

preparation for ground truth annotation (6). We then train and validate (7)

input data from movies that have ground truth annotation using a ResNet-18

architecture to generate a trained classifier (8). A post-processing filtration

step removes transient errors (9) in state calls. We can then process new

experimental data and apply the classifier to that processed data (10) to

generate summary statistics for high-throughput experiments (11).

Embryo isolation and applying “smart” microscopy

to optimize data collection

We isolated embryos from gravid adults by hypocholorite treatment [17] and added

them to a 384-well glass-bottom plate (Cellvis).

To reduce the collection of empty fields of view (FOVs), we used the “JOBS” function in

Nikon NIS Elements software (version 54203) to perform threshold-based object

detection (Nikon Elements script available here) in a first round of imaging, tiling over

Figure 1

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/main/microscopy


each well (Figure 2, B). FOVs that passed a minimum object detection criteria (usually >

3 embryos detected) moved to a second round of imaging (Figure 2, C and Figure 3).

We then imaged these embryo-containing FOVs every five minutes for a minimum of

14–16 hours, a length of time that should allow for wild-type C. elegans to hatch into the

L1 larval stage [18].

Smart imaging to collect high-throughput nematode

embryogenesis data.

(A) We perform imaging in 384-well plates in a subset of wells. In this

example, the colored wells denote potential different treatments in a

given experiment.

(B) We perform a round of object detection to limit data collection to

FOVs that have a minimum number of embryos. Example FOV is shown

as raw image (top) and after object detection (bottom), where the dark

blue dot indicates a detected object.

(C) Example FOVs that either fail (❌) or pass (✅) object detection.

Figure 2



Image processing

After image acquisition, we preprocess the raw FOVs to crop around each embryo to

obtain images of uniform size that are centered on a single embryo. This

preprocessing step significantly reduces the complexity of subsequent annotation and

analysis — this two-fold approach transforms the problem of object detection and

classification into the problem of image classification. We segmented the embryos

from the temporal fluctuations in intensity by computing the standard deviation of the

raw bright-field movies across the time dimension, then using Otsu thresholding to

generate a background mask (Figure 3, A). We then filtered the foreground regions in

the background mask using morphological criteria to exclude regions that did not

correspond to a single isolated embryo. Finally, we obtained movies of single embryos

by cropping square bounding boxes of a size equal to the length of the embryos

around each foreground region (Figure 3, B).



Image processing workflow to generate single

cropped embryo time-lapses.

(A) Example segmentation workflow for an FOV.

We segment data based on standard deviation

over time (left) and perform smoothening in xy

(middle), which results in detection of a subset of

embryos in a given FOV. Detected embryos are

given a unique ID. As an example, we’ve numbered

starting from 0 in this figure.

(B) Representative, cropped time-lapses from the

FOV in the example shown in (A). Scale bar, in this

and all subsequent images, is 10 µm.

Key frame annotation for ground truth

To build a classifier for nematode embryogenesis, we first had to decide on a core set

of developmental stages that would be useful to encode as ground truth. C. elegans

embryogenesis is highly stereotyped, with a defined cell lineage and rapid

development, as embryos hatch in ~12–14 hours into a motile larval stage (L1). For our

classifier, we selected key developmental stages based on the work of John Sulston

and colleagues, whose groundbreaking efforts led to the first cell lineage map of any

animal embryo [18].

Figure 3



While a rare occurrence in our wild-type imaging, we did observe instances of

unfertilized embryos, likely stemming from a result of the hypochlorite bleaching

treatment or from older hermaphrodites that had exhausted their supply of sperm [19].

In experimental manipulations or in experiments involving aging, we expect that

recording the frequency of unfertilized embryos would be useful, so we annotated

images of unfertilized embryos (Figure 4, A and B.0). Next, we binned all of the early

cell division events prior to major morphogenetic movements into a proliferation stage,

which would also include all the events associated with gastrulation (Figure 4, A and

B.1). The first major morphogenetic changes in the embryo are observable by bright-

field microscopy imaging restricted to a single z-plane, and happen ~six hours into

development, when the embryo takes on a characteristic bean morphology (Figure 4, A

and B.2). The next characteristic stage in nematode development is the comma phase

(Figure 4, A and B.3), which Sulston et al. precisely defined as “the moment at which

the ventral surface of the tail lies perpendicular to the long axis of the egg” [18]. In our

movies, this stage only represented a 10-minute imaging window (two frames, as our

time interval was five minutes). Shortly after the comma stage, the embryo begins to

move and progresses through three stages, usually defined as one-, two-, and three-

fold. We binned these stages together as the fold stage (Figure 4, A and B.4). Finally,

the larva hatches into its environment, escaping the eggshell, which for purposes of

ground truth training we annotated as hatch either the moment we saw the larvae

escape or more commonly in our imaging data, the first frame without an embryo,

though sometimes the eggshell is visible in the frame (Figure 4, A and B.5).



Schematic and representative images of the developmental stages we

used to create a nematode classifier.

(A) Schematic and (B) images showing the seven classes we selected for

annotation. We annotated images irrespective of orientation so our classifier

could correctly identify stages in both lateral and dorso-ventral orientations.

White arrows indicate invagination at the bean stage and yellow arrows

indicate the orientation of the growing tail with respect to the rest of the

embryo, as described by Sulston et al.

To add functionality to our classifier for downstream experiments, we wanted to

annotate images of embryonic lethality or death (Figure 4, A and B.6). We looked

through our original dataset, and not surprisingly, given the high fidelity of C. elegans

embryogenesis [20], we were only able to find two examples (out of 291) of embryos

dying during imaging. In an attempt to generate more images of embryonic lethality,

we heat-shocked wild-type L4-stage animals (the last developmental stage before

becoming gravid adults) at 37 °C for one hour and collected embryos the following day.

Figure 4



However, even in this dataset, we were only able to identify an additional two examples

of “death.”

Rather than troubleshoot heat shock conditions, we decided to use a pharmacological

perturbation strategy to induce embryonic lethality. A previous attempt to build a C.

elegans embryo classifier used several perturbation strategies, including high salt [15].

We found that at 0.2 M NaCl, the concentration used by Atakan and colleagues, we still

observed insufficient incidence of embryonic lethality. Given that Atakan and

colleagues found high embryonic lethality in the context of a microfluidic chamber (in

addition to 0.2 M NaCl), it’s possible that this level of lethality (~30%) depended on

other environmental factors in addition to the hyperosmotic stress. In other studies not

utilizing a microfluidics chamber, researchers have used higher salt concentrations to

induce hyperosmotic stress [21]. Thus, we performed an additional round of imaging

using 0.5 M and 0.75 M NaCl. At 0.5 M NaCl, we noticed that many embryos were

arrested during fold stages. At 0.75 M NaCl, we saw pronounced embryonic lethality.

We therefore used images from this 0.75 M NaCl dataset as additional ground truth

annotations for training a classifier to recognize death.

Machine learning using a ResNet-18 architecture to

create a nematode classifier

We trained a ResNet-18 [16] convolutional neural network (CNN) architecture in

PyTorch (Figure 5). We started with a pre-trained ResNet-18 and adapted the model to

our task via transfer learning. We replaced the first convolutional layer to allow for

multiple input channels. We pooled annotated movies of unperturbed, heat-shocked

and osmotically perturbed embryos to train and evaluate a model that generalizes to

diverse perturbations. In order to make the model invariant to orientation and small

differences in the size of the embryo, we augmented the input images with transforms

such as random rotations and random scaling.

We tested several different data transformations when selecting an optimally

performing model, comparing model performance on raw data as input (Figure 5, A

and B) to measures of temporal fluctuations, such as moving average over time and

moving standard deviation over time (Figure 5, C and D). We eventually chose to use

the moving standard deviation and the moving mean with a window size of five frames

(Figure 5, C and D) as encoding temporal dynamics as input data improved stage

classification accuracy for almost all stages as compared to raw data (Figure 5, B and



D). The best-performing model classified most stages (bean, fold, hatch, and death)

with >77% accuracy (Figure 5, D). Confusion resulted during classification of the

comma stage from bean-stage embryos, and, to a lesser extent, between unfertilized

and dead embryos (Figure 5, D).



Encoding dynamics into a ResNet-18 CNN improves nematode

classifier performance.

We initially trained a ResNet-18 CNN architecture using raw data as

input into the model (A) resulting in a confusion matrix (B). Ground

truth annotations are shown along the y-axis and classifications

along the x-axis. After testing several different input data

transformations, we found that using the moving standard deviation

and moving mean with a window size of five frames (C) performed

better than using raw data (A) as inputs into the neural network (see

Materials and methods for additional details), as shown by a test

confusion matrix (D) from annotations across experiments. The

best-performing model (D) performs at high accuracy for most

stages (> 77% for proliferation, bean, fold, hatch, and death) with

poor performance for comma (47%) and detection of unfertilized

embryos (61%).

Figure 5



Improving classifier performance with post-

processing

Although our trained network classified developmental stages with reasonable

accuracy (Figure 6, A and Aʹ), we noticed that many of the errors in the classification of

our test data occurred due to transient confusion between non-sequential stages (e.g.,

between proliferation and fold) or confusion between embryonic lethality (death) and

fold stages (Figure 6, B and Bʹ). To correct confusion between non-sequential stages,

we first applied a median filter (using a window size of seven frames) to the classified

stages to remove transient errors. Then, we eliminated developmentally impossible

stage transitions (such as going backward in development or skipping stages). To

eliminate confusion between embryonic lethality and the fold stage, we took into

account the developmental outcome of the individual time-lapse — i.e., if an embryo

hatched successfully at the end of the time-lapse, we eliminated any transitions prior

to the death stage (Figure 6 Aʹ and Bʹ). Overall, post-processing improves stage

classification accuracy for bean, comma, fold and death (Figure 5, D versus Figure 6,

C).

We were unable to perform post-processing on the stages between proliferation and

fold (comma and bean), which represent a period of morphogenesis during C. elegans

development [22]. Confusion between comma and bean is not surprising, as the

comma stage occurs for ~10 minutes, corresponding to ~two frames in our time-lapse

datasets. We used the precise definition of the comma stage established by Sulston et

al. in our classification, but this stage is easily confused with the previous bean stage,

even by a trained human annotator. Combining these two stages into a single

morphogenesis stage, indicative of the cell movements and rearrangements that

occur between proliferation and the fold stage [22][18], would result in > 88%

accuracy (e.g., correct bean ID = 81% + incorrect ID as comma = 7%; Figure 6, C). We

expect that experimentally, it would be useful to broadly classify bean and comma

together, as a means of quantifying phenotypic responses that might result in changes

in some of the major tissue level rearrangements that occur during this phase of

development, including dorsal intercalation and ventral enclosure [22][23].



Post-processing to improve classification.

(A, B) Example embryo time-lapse movies with classifier annotations

appended to the movie.

(A′, B′) Corresponding classifications per frame. Blue traces are the

original classifications and orange traces are the post-processed

classifications.

(C) Confusion matrix comparing post-processed annotations to ground

truth annotations for embryos not used during training.

Our code in Python is available in this GitHub repository (DOI:

10.5281/zenodo.10247028).

Figure 6

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://doi.org/10.5281/zenodo.10247028


Using the classifier for high-throughput studies

of nematode development

Identifying developmental outcomes in high-

throughput imaging experiments

In this section, we summarize the results of using our classifier to aid in the analysis of

high-throughput, time-course imaging data. First, we examined the final state

classifications from imaging wild-type embryos and embryos whose mothers

experienced a brief 37 °C heat shock (Figure 7, A and B). These data supported our

initial observations when we were annotating images for ground truth, as there were

few (1%, n = 3/291 embryos) instances of embryonic lethality in wild-type embryos, and

only a slight increase (8%, n = 11/137 embryos) in embryonic lethality in embryos

following heat shock.



Classifier identifications of developmental outcomes from high-

throughput imaging.

(A, C) Stacked bar graphs depicting the percentage of embryos per

developmental stage for each experiment [control and heat shock (A) and

osmotic shock experiment (C)]. Color key indicates final developmental

state.

(B, D) Representative frames from individual time-lapses for each

experimental condition, as indicated with final state classification shown at

the end of each image series.

Next, we wanted to analyze the results of the osmotic stress dataset (Figure 7, C and

D), which we performed to collect examples of embryonic lethality (“death”) for our

classifier, given the low occurrence of embryonic lethality in our wild-type and heat

shock datasets (Figure 7, A). To interact with our data visually, we generated a filmstrip

of every 10th frame for every other embryo in our datasets (Figure 8). We treated

embryos with either 0 M (control), 0.5 M, or 0.75 M NaCl solution and allowed them to

develop for 16 hours. While C. elegans is capable of adapting to high-salt environments

[24][21], embryos treated with high salt solutions without pre-adaptation results in

Figure 7



embryonic lethality at varying penetrances [21][15]. We selected two concentrations,

0.5 M and 0.75 M NaCl, as these treatments robustly resulted in embryonic

phenotypes during our imaging. Our classifier was able to identify developmental

outcomes from this perturbation experiment (Figure 7, C). Specifically, we observed

that embryos treated with 0.5 M NaCl either arrested in the fold stage (48%, n = 76/158

embryos) or died (37%, n = 58/158 embryos) during the time-lapse. At higher salt

concentration (0.75 M NaCl), the majority of embryos died during imaging (81%, n =

129/160 embryos).















Micrograph time series data from the

osmotic shock experiment.

We extracted every tenth frame from the

time-course experiment where we exposed

C. elegans embryos to 0 (green), 0.5 M (gold),

and 0.75 M (purple) NaCl.

Reliably classifying other nematode species requires

species-specific ground truth annotations

As a final test of our nematode classifier, we imaged embryonic development of two

additional species of free-living rhabditid nematodes: an additional Caenorhabditid

species, Caenorhabditis portoensis, and a more distantly related species, Oscheius

tipulae (Figure 10, A, phylogeny based on [15]). We annotated 15 movies (Figure 9, B for

representative images) of each species and used the trained model to classify the

images from these experiments. The original model performed well at classifying

proliferation (90% for C. portoensis, 92% for O. tipulae), fold (78%, 94%) and hatch

(100% for both) in these data, but, as was the case with the C. elegans data, struggled

to correctly classify morphogenesis stages [bean (22%, 48%) and comma (15%, 7%)]

(Figure 9, C). During annotation, we noticed that O. tipulae failed to hatch during the

imaging window of 16 hours. These data support observations that O. tipulae develops

Figure 8



at a slower rate than C. elegans [25], accounting for the absence of hatch in our

confusion matrix (Figure 9, C).

Given the low performance and high confusion on morphogenesis stages (bean and

comma) we next asked if we could improve classification by training a model that

included ground truth annotations of data from the other two nematode species. We

retrained the network with this additional data, and performance for all stages

increased (e.g., bean correctly classified at 80% and 71% in C. portoensis and O.

tipulae, respectively; Figure 9, C).

Extending our classifier to other nematode species.

(A) Phylogenetic relationship of the three nematodes studied in this project.

(B) Representative time-lapse images from each species, shown as a

filmstrip containing every 10th frame of the original cropped movie.

(C) Confusion matrices for each species based on a classifier model trained

only on C. elegans (left) and a new model trained on ground truth annotations

from the additional nematode species (right).

Finally, we asked whether our model trained with images from additional nematode

species performed better or worse when classifying our original C. elegans data. The

Figure 9



addition of images for other nematode species resulted in improved performance for

some of the stages, specifically proliferation (83% to 91%) and death (79% to 94%)

(Figure 10, A–B). While there was improvement at classifying comma stage (47% to

65%), identification of the bean stage was poorer in the general model (77% to 56%)

(Figure 10, A–B).

We’re interested in seeing if these trends might improve with the addition of more

data, and have included all of the documentation necessary to train new models. If you

want to classify developmental outcomes from your own high-throughput imaging

experiments, we suggest using the model trained on all three species, as it performed

better at classifying hatch and embryonic lethality (death).

A more general model improves classification

accuracy of C. elegans images.

Confusion matrices of validation data for the original

network trained on only C. elegans images (A) versus

the network trained on C. elegans and the two

additional nematode species (B).

Figure 10



Materials and methods

Species and strains

The following strains were used in this study: C. elegans: N2 (wild-type), DQM327

(bmd75[eef-1A.1p::his-58::dendra::3xHA::tbb-2 3’UTR]) I; cpIs80 [eef-1A.1p::mKate2-

C1::mKate2-GLO::PH::3xHA::tbb-2 3'UTR] II. O. tipulae: CEW1. C. portoensis: EG4788.

We maintained all nematode strains used in this study on 60 mm NGM plates on an

OP50 E. coli lawn using standard methods [26].

Embryo isolation

We isolated nematode embryos by hypochlorite treatment of a minimum of three 60

cm NGM plates of gravid adults using a standard protocol [17]. Briefly, we washed

gravid hermaphrodites off NGM plates using M9 media, then concentrated and

treated with hypochlorite for 6–8 min, then washed repeatedly with M9 to remove the

unreacted hypochlorite. To concentrate embryos following the final M9 wash for

dispensing into 384-well plates for imaging, we decanted the M9 wash and examined 1

µl of embryo suspension. Our target concentration was ~50–75 embryos/µl. If too

concentrated, we added an appropriate volume of M9, usually ~50–100 µl. We added 1

µl of embryo suspension to individual wells in a 384-well glass-bottom plate (Cellvis)

containing 50 µl of M9 per well. For hyperosmotic perturbation experiments, we added

embryos to the appropriate NaCl concentration (0.5 M or 0.75 M). To disperse embryos

throughout the well, we gently pipetted the suspension up and down using a 200 µl

pipette. We settled embryos to the bottom of the well in preparation for imaging by

performing a brief centrifugation (1 min, 600 × g) in a table-top centrifuge (Sorvall X Pro

Series) at room temperature (~21°C).

Microscopy

We performed all imaging experiments on a Nikon Ti2-E compound inverted

microscope, equipped with an ORCA-Fusion BT digital sCMOS camera and configured

for widefield imaging. We collected all data using a Plan Apo 20× 0.75 NA Air objective.



We performed acquisition using High Content Analysis NIS-Elements software (version

54203). We performed object detection to select FOVs that contained a minimum

number of embryos by designing a custom JOBS script to perform thresholding (script

available here). Following tiled scans of wells containing embryos, we then imaged

FOVs that met the object detection criteria every five minutes for 14–16 hours, to allow

for embryos to complete development and hatch as L1 larvae.

SHOW ME THE DATA: All of the cropped images used in this pub are available

on Zenodo (DOI: 10.5281/zenodo.10211684)

Image processing and model training

We performed all image processing in Python. Briefly, we converted raw images from

each dataset from Nikon's ND2 format to Zarr format, cropped embryos from each raw

FOV, and calculated the moving mean and moving standard deviation for all cropped

embryos.

We used PyTorch with PyTorch Lightning to facilitate dataset loading and model

training. We wrote a custom dataloader to aggregate the time-lapse frames from all

annotated cropped embryos and split the aggregated frames (from 95 C. elegans

movies) into training, validation, and test sets. After training, we used the model

checkpoint with the highest validation accuracy to infer (use the tool to provide a best

guess for) stage labels for all cropped embryos. Finally, we post-processed the inferred

labels (as described in Figure 6) to generate the final summary statistics shown in

Figure 7. To calculate the confusion matrices, we generated an independent set of

manually annotated embryos (from 55 C. elegans movies and 15 movies from C.

portoensis and O. tipulae) that were not among the embryos used during training. For

re-training a network on all three species of nematodes, we annotated additional

frames (from 15 movies per species) for training, validation, and test sets as above.

All our code in Python and additional documentation is available in this GitHub

repository (DOI: 10.5281/zenodo.10247028).

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/main/microscopy
https://www.doi.org/10.5281/zenodo.10211684
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://doi.org/10.5281/zenodo.10247028


We wrote a separate CLI script to perform each of these steps (e.g., ND2 conversion,

embryo cropping, model training, label classification, post-processing, etc.). Please

see the README in our GitHub repo for more details and examples of how to use each

of these scripts. We used ChatGPT and GitHub Copilot to write some code.

We added timestamps for figures using a Napari plugin (napari-timestamper).

Key takeaways
We trained a ResNet-18 neural network to identify key developmental stages of

nematode embryos and classify endpoint results from high-throughput imaging

experiments, distinguishing between embryonic lethality and successful hatching. We

chose a deep learning model that relied on supervised learning and human annotation

of key frames, but trained a model that took advantage of the dynamic nature of the

time-course data. While the model performed well at identifying most of the

developmental stages as well as classifying lethality and hatching, we found it

classified the subtle differences that make up the key morphogenesis phases of

nematode development less robustly. Finally, we found that we needed to add image

data from other species to train a new model that could perform well in identifying

stages of nematodes beyond C. elegans.

We hope that C. elegans researchers who want to phenotype mutants at scale or use

forward or reverse genetic approaches at high throughput will find this tool useful.

More broadly, we hope that our workflow and approach might be useful to anyone

wanting to apply deep learning to time-course data.

Next steps
While we’re not pursuing this work further, as our scientific strategy has shifted, we’d be

interested in hearing whether this approach is useful for building classifiers for other

time-course imaging data. We hope that the basic tools we’ve included in our GitHub

repository will be a useful starting point for anyone interested in building a classifier

with their own imaging data. We’re particularly curious if researchers who would find

this tool useful for their own science have the required computational expertise to use

it based on the documentation we’ve provided. If you do use this resource, we’d love to

hear about your experience.

https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://socket.dev/pypi/package/napari-timestamper
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
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