Published on Nov 17, 2023 by Arcadia Science DOI: 10.57844/arcadia-d86f-498c

Streamlining microscopy
datasets by enriching for
in-focus frames

We distilled label-free microscopy data by comparing and
implementing feature-detection algorithms. Sobel and Laplacian
methods outperformed pixel intensity variance in accuracy.

Contributors (A-2)

Feridun Mert Celebi, Keith Cheveralls, Seemay Chou, Tara Essock-Burns,
Megan L. Hochstrasser, Galo Garcia lll

Version4 - Sep19, 2025

Purpose

Microscopy datasets are notoriously large, making more complex analyses of these
data inherently slower or intractable [1][2][3]. Previously, we'd found that filtering large
datasets down to smaller, information-dense subsets allowed us to iterate on our
experimental troubleshooting in increments of minutes or hours, instead of many
hours or days. In that case, we reduced the datasets by 82% by including only frames
of cells in focus.

Here, we compare three simple feature-detection algorithms to identify the most
reliable metrics for selecting in-focus frames in label-free microscopy data, namely,
the variances of the raw image, the Sobel-filtered image, and the Laplacian-filtered
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image. We found that the variances of the Sobel- and Laplacian-filtered images
surpassed the variance of raw pixel intensities in accuracy and that both the Sobel and
Laplacian filters provided accurate in-focus frame detection, aligning closely with
expert assessments. We hope this comparison will help cell biologists and
computational researchers expedite and refine analysis in high-throughput
experiments.

- This pub is part of the platform effort, “Microscopy: Visually interrogating the

natural world.” Visit the platform narrative for more background and context.

- Our time-lapse data, expert annotations, Fiji macro, and code in Python are

available in this GitHub repository.

The strategy

The problem

The increasing volume of time-lapse microscopy data in experimental biology poses
challenges in extracting useful biological information at scale [1][2][3]. Increasing data
volume entails longer transfer and processing times, which can slow the pace of
biological research. For example, our initial computational workflows to measure the
motility, size, and shape of two species of algae took days of processing time, largely
due to the total size of the time-lapse data [4]. Also, we found that measuring the
morphology of motile cells in bulk within time-lapse data was less accurate than
measuring cells in maximal focus [4].

We're performing an interspecies hybridization experiment that involves collecting
phenotypic measurements of Chlamydomonas cells from time-lapse microscopy data
[4]. We want to collect accurate measurements of as many algal cells as possible. We
plan to analyze thousands of progeny strains in our experiment.
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Our solution

One solution to manage such large and complex image-based datasets is to filter the
raw data to enrich information that is useful. We adopted this approach during our
preliminary benchmarking of the two interfertile Chlamydomonas species that we're
hybridizing [4]. In our previous approach, we first selected a subset of frames at
random (the first 100 frames of the time-lapse), but quickly realized that this approach
can lead to frames without the object in focus. We then applied one technique
(variance of Laplacian) for detecting edges in an image, and successfully extracted
frames with the cells of interest in focus [4]. Focus-filtering allowed us to speed up our
processing time. Also, parsing focal sequences gave us more accurate morphology
measurements of our cells. We measured the cell footprint that had the maximal area
in the sequence, as opposed to using measurements of cells that were partially in
focus that would inaccurately skew the data [4].

The resource

We evaluated three different focus-filtering methods by comparing them to manual
human annotations of in-focus frames. We thought that these methods could be
useful for downsampling any dataset where the object of interest moves in and out of
the focal plane, or in cases where frames contain superfluous objects. In addition, we
wanted to explore two different types of label-free data (DIC and BF) that might be
useful for training machine-learning models on microscopy data. We're sharing the
results here to serve as a resource to other researchers interested in applying these
approaches to various data types.

We chose to assess three distinct focus metrics that can detect features or edges in
computer vision workflows [5][6]: variance of pixel intensities, variance of edge
sharpness (determined via the Sobel operator), and variance in detailed edge
sharpness (determined via the Laplacian operator). Each operator, Sobel or Laplacian,
applies an algorithm to convert an image to a filtered image. Then we take the variance
of each pixel value in the filtered image to use as a metric. Each approach is

summarized in the list below and you can see example visuals in Figure 1.

1. Variance of pixel intensities: This metric gauges the dispersion of pixel

intensities from their mean value within each frame. We postulated that frames



2.

3.

with in-focus cells would exhibit a heightened pixel intensity variance. The
underlying rationale is that such frames, being more feature-rich, would likely have

a wider range of pixel intensities.

Variance in edge sharpness: To understand the spread or variability of edge
sharpness in our images, we analyzed the variation in the intensity of edges. We
did this by computing the magnitude of the image gradient, which highlights the
edges, using the Sobel operator. We hypothesize that images with in-focus cells
will show a higher variability in edge intensity. This is because in-focus images

tend to have crisper, more defined edges.

Variance in detailed edge sharpness: Building on the previous idea, we also
examined the variation in the sharpness of finer details within the edges
themselves. This is achieved by using a second-order differential operator, the
Laplacian, to measure the rate of change of the magnitude of the gradient. Our
hypothesis was that this measure would further distinguish between in-focus and
out-of-focus cells, as sharper detail within edges is more pronounced in the in-

focus images.
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Figure 1

Application of focus metrics to time-lapse bright-field
(BF) and differential interference contrast (DIC)
microscopy data.

Image sequences show a Chlamydomonas cell swimming
in a well with a diameter of 100 microns. Each filter, Sobel
or Laplacian, applies an algorithm to convert an image to a
filtered image. Then we take the variance of each pixel
value in the filtered image. “Rationale” denotes why we
thought each measure might be able to distinguish
between frames with cells that are in focus vs. out of focus.

To compare these three algorithmic approaches against a “ground truth,” we recruited
a few of our scientists who are proficient in cellular microscopy and adept at identifying
when cells are in focus. These experts examined time-lapse sequences of motile cells
as they swam in and out of the focal plane, which we previously captured using either
DIC or BF imaging [4]. Participants classified each frame as either “in focus” or “out of
focus.” The annotations all agree with one another for 70% of frames (126/180). At least
3 of the 4 annotations agreed with one another for 92% of frames (166/180).

We evaluated the accuracy of each focus metric as a predictor of the expert-
annotated in-focus frames by plotting the receiver operating characteristic (ROC)



curves for each metric. The ROC curve is a plot of the true-positive rate (TPR) as a
function of the false-positive rate (FPR) for a binary classifier. In this case, we change
the value of the threshold systematically to construct the ROC curve.

Understanding ROC curves

Imagine you have a program designed to look at images of cells and decide
whether each cell is "in focus" or "out of focus." The ROC curve is a graph that
shows how well your program does this: it tells you the rate at which it correctly
identifies in-focus cells (true positives) against the rate it mistakenly labels out-
of-focus cells as “in-focus” (false positives). Graphing results from a perfect
system would go straight up and then over [jumping from (O, 0) to (O, 1) to (1, 1)],
hitting the top corner. But if our system isn't perfect, the path it takes on the graph
starts to lean and bend, getting closer to a straight line from bottom-left (O, O) to
top-right (1, 1). If it were just guessing, it would make a straight diagonal line.

We calculated and plotted the ROC curves for each focus metric and each of the four
experts’ sets of manual annotations (Figure 2). We found that the variance of pixel
intensity is a poor focus metric for both bright-field and DIC time-lapse data (Figure 2,
A). For each of the expert annotations, this metric had roughly equal false- and true-
positive rates at most thresholds — ROC curves roughly align with the diagonal of the
plot, suggesting it performs as well as a program that selects frames randomly.

Promisingly, we found that the Sobel and Laplacian metrics accurately identified
frames of cells in focus. For each expert annotation, these metrics displayed a high
true-positive rate and a low false-positive rate at most thresholds. At a false-positive
rate of 5%, the median true-positive rate for the Sobel metric was 71% for bright-field
images and 79% for DIC images. For the Laplacian metric, it was 57% for bright-field
images and 72% for DIC images. Consequently, the ROC curves were aligned along
the upper-left portion of the plot. Thus, we see that the Sobel and Laplacian metrics
perform well in this particular quantitative assessment.

While the Laplacian metric appears to perform a bit worse on BF images (i.e. 57% for
the Laplacian versus 71% for the Sobel), these reportings are sensitive to differences
in user annotations, so we don't put a ton of weight on these numbers. That said, this
finding is in line with our qualitative assessments. By simple visual inspection, we see
that the Laplacian metric performs better on DIC data than on BF data. This fits with



our expectation that Laplacian should do better with finer features, as there are more
fine features in DIC images. In addition, the Sobel metric identifies frames where the
shadow of the cell is visible, whereas the Laplacian metric is less sensitive to the
shadow. If we want to track cells even when the cell is slightly out-of-focus (i.e. a
shadow is visible), we might use the Sobel metric. If we only want the frames of the cell
truly in focus, we might use the Laplacian metric. In our previous work, using Laplacian
focus filtering reduced data volume by 82% while maintaining accurate measurements

[4].
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Figure 2

Variance of pixel intensity is a poor predictor of in-focus
frames, while variances of Sobel and Laplacian magnitudes
perform well on bright-field and DIC data.

We've plotted ROC curves for the variances of pixel intensity, Sobel
magnitude, and Laplacian magnitude to see how they predict in-
focus frames on bright-field and DIC time-lapse data. Each curve
represents data from a single user annotation. There were four user
annotations.

In conclusion, our comparative analysis of focus metrics within label-free microscopy
data has revealed useful distinctions in performance between feature- and edge-

detection algorithms. Our study demonstrated that the Sobel and Laplacian filtering



methods align closely with manual assessments of DIC data by expert microscopists,
with high true-positive rates. Sobel performed better than Laplacian filtering for BF
data. The variance of pixel intensity proved to be a poor focus metric for both types of
data. Complementary to our work, independent researchers found that the Laplacian
metric is effective at segmenting regions of objects in focus in micrographs [7]. They
also compared many other metrics and developed a deep learning pipeline for
segmenting objects in focus.

We previously used the Laplacian filtering method to identify in-focus frames of algal
cells [4]. Given its strong performance here with DIC data, we’ll stick with this
approach when we move onto the higher-throughput phase of that project because we
plan to image using DIC. For future work that involves tracking cells and cell shadows
in time-lapse data, we’'ll consider Sobel filtering.

We hope these findings serve as a resource to guide the use of specific focus metrics
for cell biologists and computational imaging specialists, particularly those working
with label-free microscopy data (DIC and BF). This work also validates the use of focus
filtering as a method to enrich datasets with information that is useful, enabling us to
phenotype more strains of cells in our future experimental workflows. Specifically,
applying the filtering methods we explored here should improve the speed and
reliability of phenotypic measurements in our interspecies hybridization experiments.

Methods

We based our assessment on a time-lapse dataset containing 180 frames of

Chlamydomonas cells swimming in and out of focus. We collected these images with
either DIC (90 frames) or bright-field (90 frames) microscopy for a prior pub [8]. We
manually curated the experimental data so that we had cells that were clearly going in
and out of the focal plane. We aimed to have an equal representation of "in focus" and
"out of focus" frames. In a pilot experiment, we showed frames to the expertsin a
random order. However, the annotations were highly variable, because the experts had
a hard time assessing whether a cell was in focus without seeing the transition
between in and out of focus. In our subsequent attempt presented here, we showed all

frames in sequence.

We opened the dataset in Fiji [9], and ran a macro that asked the user for an

annotation of either “in focus” or “out of focus.” Four experts annotated each frame.
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We analyzed the results of the experiment by receiver operating characteristic curve
(ROC) analysis. The code to perform the analysis and plot ROC curves can be found in
our GitHub repository.

We used ChatGPT to write, clean up, and comment code. We also used ChatGPT to
write text that we edited, suggest wording ideas, streamline and clarify text, and
rearrange text to fit the structure of our “Resource” pub template. Last, we asked
ChatGPT for a list of suggested focus metrics that we could use in this study, and we
selected three from the list.

Our time-lapse data, expert annotations, Fiji macro, and code in Python are
available in this GitHub repository (DOI: 10.5281/zen0do.10145522).

Key takeaways

1. Sobel and Laplacian filtering methods can accurately identify frames of cells in

focus that agree with human microscopy user assessments.

2. The variance of the raw pixel intensities in the image fails to accurately identify

frames of cells in focus.

3. We will continue to use the Laplacian metric for identifying in-focus cells in DIC
data.

4. In future work, we will consider using the Sobel metric for identifying cells and cell

shadows.

Next steps

In the next phase of our research, we'll apply Laplacian focus filtering of DIC time-
lapse data. The goal is to perform high-throughput phenotyping of progeny from our
Chlamydomonas species hybridization. We'd appreciate any feedback on this pub,

especially questions that would help you replicate the work and insights from anyone
who may have compared these approaches in analyzing other types of microscopy
data.
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