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An interactive
visualization tool for
Amblyomma americanum
differential expression
data

We analyzed RNA-seq data from Amblyomma americanum to explore

gene expression linked to skin manipulation during tick feeding. We

built an interactive app to explore the differential expression results

and find patterns related to tick sex, tissue, and time in blood meal.
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Purpose

Ticks have evolved to feed on host blood undetected. Female ticks take long “blood

meals” that can last over a week. These ticks use molecules in their saliva to

manipulate host pathways and evade the immune system. Some of these molecules

may have therapeutic benefits for humans, particularly in managing itch and

inflammation. These molecules are likely produced in the female tick salivary glands,
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The context
Ticks (order Ixodida) are parasitic insects that feed on the blood of animals. There are

over 800 recognized species of ticks on the planet [1]. Ticks have evolved many ways

to evade host detection during a blood meal [2]. The blood meal can last up to a week

in hard-bodied, slow-feeding ticks. Only females participate in these long blood meals

— males may feed intermittently from a host but primarily seek out hosts to mate with

females [3].

Prolonged female feeding requires many adaptations for the tick to remain attached to

the host undetected and to maintain blood flow throughout the meal. These include

potentially at higher levels than in males or other tissues. Investigating differential

gene expression could help identify anti-itch or anti-inflammatory molecules.

We re-analyzed public RNA-seq data from A. americanum ticks, focusing on variables

such as sex, tissue type, and feeding time. Though batch effects and a lack of

replicates limited the number of samples we could analyze, we were able to compare

20 of 56 RNA-seq samples using two differential expression models. The first model

compared different tissues within and between sexes, while the second also included

time since the start of a blood meal. We developed an interactive application to

explore the results, aiming to identify tick molecules that manipulate skin pathways.

Our primary audience is researchers interested in identifying new therapeutic proteins

or molecules in female tick salivary glands. We envision these researchers using this

tool as a complement to other genetic or molecular discovery approaches. For

example, a researcher who’s identified protease inhibitor genes in the A. americanum

genome could narrow this list down to those most likely to interact with the host by

using the app to identify which protease inhibitors are expressed in the salivary gland.

This pub is part of the project, “Ticks as treasure troves: Molecular discovery in new

organisms.” Visit the project narrative for more background and context.

You can find code for the creation of the differential expression models and for the

Shiny app, along with usage instructions, in this GitHub repo.

https://research.arcadiascience.com/ticks-molecular-discovery
https://research.arcadiascience.com/ticks-molecular-discovery
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strategies to maintain blood supply by overcoming platelet aggregation and blood

coagulation and to hide from the host by blocking itch, pain, and some immune system

activities [2]. Saliva delivers molecules and proteins that achieve these actions.

While ticks use these adaptations to get host blood, we expect that many of the

molecules they use to manipulate host pathways would have therapeutic benefits if we

could co-opt them for use in humans. At Arcadia, we’re particularly interested in

molecules or proteins that manipulate skin pathways involved in itch and inflammation.

Examples of tick saliva molecules that manipulate skin pathways include votucalis,

which sequesters histamine to attenuate itch [4], evasin P991_AMBCA, which binds to

inflammation-causing chemokines [5], and a carboxypeptidase that cleaves the

vasodilator and pain-inducing peptide bradykinin [6].

We expect the salivary glands of female ticks to express the most proteins with

potential therapeutic activities. These organs produce saliva, which is secreted at the

feeding site and manipulates the biology of the host. Given that the biology of tick

feeding varies during feeding [3][7] — manipulating distinct biological pathways at

different points — the temporal expression of a gene may offer insights into its

functional role. Similarly, for candidate proteins of therapeutic interest, understanding

a gene’s expression pattern can guide us in determining the optimal time to harvest

tick tissues if this is relevant to the experiment.

Taken together, gene expression in female tick salivary glands may offer clues for

uncovering the molecules that manipulate human skin pathways.

What expression data do we have to work with

The relative affordability of next-generation sequencing combined with publishing

mandates for open data have produced an abundance of public sequencing data. RNA

sequencing in particular is a popular modality in part because it does not require a

reference genome to gain insight into an organism’s gene expression. While RNA-seq

data is often generated to answer specific research questions, the comprehensive

nature of the data means it can be reanalyzed or repurposed to investigate other

biological questions beyond the scope of the original research. This makes RNA-seq

data valuable and reusable for different studies. At the same time, RNA-seq data often

have strong batch effects (non-biological dataset-to-dataset variation) from things like

sample handling, RNA extraction protocol or kit, sequencer, and genomic



heterozygosity of a species [8]. No matter their source, major batch effects prevent

comparison between samples. Biological replicates (minimum two) and balanced

experimental designs are also necessary to compare many samples with differential

expression. For example, we have to discard some samples if a condition doesn’t have

a replicate or we don’t have a mirrored condition sample to compare it to (e.g., male vs.

female).

RNA-seq experiments have been popular in Amblyomma americanum, the lone star

tick [9][10][11][12]. A. americanum has a range that covers most of the Eastern United

States and is in part responsible for the doubling of tick-borne diseases from 2004–

2016 [13][14][15]. Given the potential importance of tick saliva in the transmission of

tick-borne pathogens and its role in the development of alpha-gal syndrome, many of

these RNA-seq studies include samples from female salivary glands as well as other

tissues, such as the mid-gut and samples from male ticks. Contrasting these samples

may highlight gene expression profiles specific to female salivary glands and uncover

key mechanisms of host manipulation. However, batch effects may prevent unified

analysis because these samples originated from different studies. This is particularly

true for A. americanum, which has high genetic diversity that clusters by population

[16].

We wanted to assess whether we could use public data to investigate the genes A.

americanum expresses when interacting with a host. Focusing on variables such as

sex, tissue type, and time during the blood meal, our goal was to develop differential

expression models with DESeq2. Differential expression models make statistical

comparisons between normalized gene counts to determine which genes are induced

or repressed in different conditions. These models may help us identify specific tick

molecules expressed in the salivary glands of females, which likely manipulate host

skin pathways at different feeding stages [3][7], providing insights into tick biology and

host manipulation.

Our approach to visualizing tick differential

expression

We re-analyzed public RNA-seq data from A. americanum for differential expression

analysis. We identified samples that clustered according to biological variables rather

than the originating study. These samples allowed us to perform differential expression



modeling based on variables like sex, tissue, and time in blood meal (the number of

hours the sample was taken after feeding began). We then developed an interactive R

Shiny app to make it easy to explore these results. The application includes key RNA-

seq analyses and visualizations like principal component analysis plots, volcano plots,

MA plots (log ratio mean average plots), and gene plots, as well as tools to summarize

gene expression by condition. Users can control differential expression results by

metrics like log  fold change, p-value, or average gene count per gene.

The resource

You can find code for the creation of the differential expression models and for

the Shiny app, along with usage instructions, in this GitHub repo (DOI:

10.5281/zenodo.14548891).

Building differential expression models

Finding samples

We started our analysis by identifying publicly available Illumina RNA-seq samples.

Using the NCBI Taxonomy page, we searched for “Amblyomma americanum” in

August 2023 and followed the Entrez records link to SRA Experiments. We then used

the SRA filtering tools to limit the results to RNA-seq sequencing data from Illumina

sequencing chemistries: txid6943[Organism:noexp] AND "biomol rna"[Properties]

AND "platform illumina"[Properties] AND "strategy RNA-Seq"[All Fields] . A

summary of the samples is included in Table 1.
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SRA study accession

Number

of

samples

Number of samples

included in

differential

expression

analysis

Reference

SRP051699 4 4 [7]

SRP091404 6 2 (replicates) [12]

SRP052078; SRP052091;

SRP052108; SRP052106;

SRP052114; SRP052123;

SRP052145; SRP052154

8 0 (batch effects)
Arthropod

cell line

SRP032795 14 14 [10]

SRP446981 24 0 (batch effects) [9]

Summary of publicly available RNA-seq data analyzed in this project.

In cases where we had to omit samples from our analysis, we’ve noted the

reason for omission in parentheses in the third column.

View the complete set of samples and metadata analyzed in this project.

Creating gene counts

We next processed these RNA-seq samples into gene counts.

We first downloaded reads with SRA Tools (version 3.0.6) fasterq-dump  and quality-

and adapter-trimmed reads with fastp (version 0.23.4) [17].

We quantified transcripts using Salmon (version 1.10.2) [18] against an A.

americanum transcriptome assembly

(“Amblyomma_americanum_transcriptome_assembly_data.tar.gz”) [19] to quantify read

counts.

While Salmon produces transcript (isoform) counts, differential expression results are

more accurate when comparing gene counts [20]. The most common way to assign

transcript isoform-level counts to their parent genes is to use a transcript-to-gene

Table 1
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mapping file. The R package tximport uses a tx2gene  file to sum the counts for all

transcripts that encode the same gene and to report the gene-level counts [20].

To generate a transcript-to-gene map ( tx2gene  file) for gene-level quantification, we

first mapped the reference transcripts back to the genome using uLTRA (version

0.1) [21].

Next, we assigned a gene name to a transcript when it overlapped with part of

the gene’s interval as annotated in the A. americanum genome annotation GFF3

(“Amblyomma_americanum_annotation_data.tar.gz”) [19]. After making these files, we

imported transcript counts and summarized them to gene counts using the tximport

package (version 1.28.0) function tximport()  with the parameter type = salmon

[20].

View the workflow code for creating gene counts from RNA-seq accessions on

GitHub.

Picking samples to include in the differential

expression analysis

We next assessed which samples we could compare via differential expression

analysis. Using the gene counts generated above, we assessed similarities between

samples as well as conditions captured in the metadata. Our exclusion criteria

included samples without replicates (minimum of n = 2 per condition) and batch

effects that led to samples clustering more strongly by study than by condition (as

determined by eye).

We first eliminated four samples from study SRP091404 [12]. This study investigated

changes to the transcriptome of A. americanum during infection with Ehrlichia

chaffeensis [12], a tick-borne pathogen primarily transmitted by A. americanum [22].

Two of the six samples captured whole, uninfected ticks while the other four captured

infected ticks. Since no RNA-seq samples in other studies were exposed to this

pathogen, we could not account for infection with E. chaffeensis as a variable in a

differential expression model, so we eliminated these four samples. Further, these

samples didn't have replicates within the study, which also prevented analysis by

differential expression.

https://zenodo.org/records/10870487
https://zenodo.org/records/10870487
https://github.com/Arcadia-Science/2023-amblyomma-americanum-diffex/blob/main/Snakefile


Principal component analysis of

normalized gene counts for the

top 500 genes by variance across

RNA-seq samples.

Sample color corresponds to the

original study that published the

RNA-seq data (see Table 1) while

sample shape corresponds to the

type of tick tissue from which the

sample originated. “Arthropod cell

line” and SRP446981 data group by

study accession instead of by tissue

type, while other samples group by

tissue type. PC: Principal component.

The percentage of the variance

explained by PC1 and PC2 is reported

in each axis label.

We next used principal component analysis to determine if batch effects led to

samples clustering more by study than by biological condition (Figure 1). This analysis

excluded 32 samples from two studies (SRP446981 and “Arthropod cell line”).

We eliminated all 24 samples from

SRP446981 [9]. This study analyzed

the transcriptome response of A.

americanum to Escherichia coli

challenge. Initially used for differential

expression analysis, it featured unfed

female ticks injected with either

phosphate-buffered saline or E. coli

and analyzed whole (i.e., sampling all

tissues). All samples from the study

clustered tightly together and away

from whole-tick samples from other

studies, indicating the batch effects

were too strong to make cross-study

comparisons. It’s possible that the

injections caused a biological impact

that led to these batch effects, but we

can’t evaluate this with the available

data.

Last, we eliminated eight samples

from the “Arthropod cell line”

sequencing effort. These eight

samples originate from two A.

americanum cell lines. The samples

all cluster tightly together and away

from other samples. Since we have no

other cell line data from other studies,

there’s no way to evaluate whether

these samples cluster alone because

they have different expression or

strong batch effects.

Figure 1
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Building the differential expression models

After filtering the data, samples from different tissues, sexes, and taken at different

times during a blood meal remained. We next performed a differential expression

analysis so we could compare these samples. We built differential expression models

using the DESeq2 package (version 1.40.2) using commands

DESeqDataSetFromTximport()  and DESeq()  [23]. We experimented with different

model structures using the design  parameter to maximize the number of samples

and conditions that we could compare. In the end, we were able to optimize these two

factors with two models. In both cases, we combined the variables we included in the

model. In DESeq2 analysis, the model matrix must be "full rank" to prevent variables

from being redundant, which can skew the results. We simplified the model by

combining variables, ensuring each variable is distinct. This lets DESeq2 accurately

calculate and attribute effects to each variable independently [23].

We were able to include all samples when we combined the variables “sex” and

“tissue” (Table 2).

Model “sex_tissue” Number of samples

female_x_midgut 3

female_x_salivary_gland 7

female_x_whole 5

male_x_whole 5

The variables and number of samples included in the “sex_tissue” model.

The combined variables are separated by an “x.”

While this model included all samples that we could compare, it gives no insight into

how gene expression varies based on time in the blood meal. Given this, we built a

second model that included time in the blood meal (by hour), only including samples

with replicates for different times in the blood meal (Table 3).

Table 2



Model “sex_tissue_blood_meal_hour” Number of samples

female_x_midgut_x_72_144 2

female_x_salivary_gland_x_12_48 2

female_x_salivary_gland_x_72_144 3

female_x_whole_x_72_144 2

male_x_whole_x_72_144 3

The variables and number of samples included in the

“sex_tissue_blood_meal_hour” model.

The combined variables are separated by an “x.” The numbers in the condition

names indicate the range of hours in the blood meal from which samples were

taken.

In general, it’s better to analyze all samples in a single model, but given the limitations

of working with this data, we worked within the bounds of what was statistically

possible in order to achieve the most biological insight.

We don’t present detailed results here as they change based on filtering and the

specific conditions compared. However, we include a summary of the number of

differentially expressed genes using default filters (log  fold change = 2, false

discovery rate = 0.05, base mean count = 10), focused on differential expression in

female salivary glands (Table 4). We observed expected ranges of expression and

genes with larger expression differences across more distinct conditions, giving us

confidence that our models are useful.

Table 3
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Condition 1 Condition 2 Induced Repressed

Female salivary gland Female midgut 183 358

Female salivary gland Female whole tick 240 631

Female salivary gland Male whole tick 256 946

Female salivary gland, 72–

144 h

Female salivary gland,

12–48 h
5 1

Female salivary gland, 72–

144 h

Female whole tick, 72–

144 h 12 48

Female salivary gland, 72–

144 h
Male whole tick, 72–144 h 31 190

The number of differentially expressed genes in female salivary glands

when compared to different conditions.

The first three contrasts are from the “sex_tissue” model while the last three are

from the “sex_tissue_blood_meal_hour” model. Induced

and repressed genes have positive and negative log  fold changes, respectively.

Only genes with a base mean count greater than 10 and a false discovery rate

less than 0.05 are included.

Interactive application for exploring gene

expression in A. americanum

We built the above differential expression models to facilitate insights into A.

americanum gene expression. We included the maximum number of variables and

conditions possible given what is available in public data. However, we wanted to let

others explore these results with different biological questions in mind. For example,

researchers could use our data to identify the conditions under which their gene of

interest is most highly expressed. Likewise, it could be used to evaluate whether a

gene of interest exhibits stronger sex-associated or time-associated effects. These

individual biological applications would be difficult to anticipate and share in written

pub format. To give researchers flexible access to this data, we wrote an interactive

Table 4
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Shiny app to explore the gene count and differential expression results. Instructions

for using the app are available on the GitHub repository along with a mapping table

(shiny/mapped_gene_names_GCA_030143305.2.csv) that enables conversion of

GenBank protein IDs from the A. americanum assembly to the gene names used in the

app.

The application features several analytical tools separated into different tabs. Users

first select which model they want to explore (Figure 2). They can then visualize the

samples in the model in a metadata table and a principal component analysis plot

colored by variables from the model (Figure 2). The “Differential Expression (DE)

Analysis” tab offers filtering capabilities based on log  fold change, p-value, and mean

count of the gene, supporting detailed comparisons across different conditions

(Figure 2). Users can also upload their data in this tab to highlight whether specific

genes of interest are differentially expressed.
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Preview of the “Differential Expression Explorer” for Amblyomma

americanum.

The Shiny app allows users to explore two differential expression models: one

built on the variables sex and tissue and one built on the additional variable time

since blood meal started. Users can toggle between the two models using a

drop-down menu. Four tabs present different information from these models.

The first, “PCA Plot,” gives an overview of the samples included in each model

using a principal component analysis and a metadata table with information

about each sample. The second tab, “DE Analysis,” includes the differential

expression analysis capabilities and visualizations. Users can select which

conditions to contrast and thresholds for filtering results. The differentially

expressed genes are then plotted in interactive plots. The third tab, “Gene,”

allows users to visualize normalized counts per gene. These plots are helpful to

determine if a few outlier samples drive differential expression of a gene of

interest. The last tab, “Expression by Condition,” allows users to see which genes

are expressed in each condition. The toggle on this tab allows users to highlight

genes that have higher relative expression.

The application includes functionality for gene-specific inquiries where users can input

a gene name to generate a boxplot displaying expression across different conditions,

offering a granular view of gene activity (Figure 2). Furthermore, the “Expression by

Figure 2



Condition” tab provides a table that reports gene expression thresholds and

percentiles, allowing users to filter and download gene expression data (Figure 2). This

tab is particularly useful for identifying genes that are consistently or exclusively

expressed in specific tissues like salivary glands.

Currently, the transcript and gene names used in our pipeline are the bespoke

annotations assigned by intermediate tools in different pipelines. However, GenBank

recently accepted our genome gene-boundary annotations [19]. Given this, we have

also provided a mapping table that can be used to map NCBI protein identifiers to the

names used in our app. The mapping table is available in the GitHub repository.

Additional methods
We used ChatGPT as a starting point to put our code into a Shiny app and adjusted

ChatGPT’s outputs. It also suggested wording ideas and edits, and we picked and

chose which bits to use.

We also provided Notion AI with starting text and had it rearrange that text to fit the

structure of one of our pub templates, and then edited that output.

Key takeaways
1. Re-analyzing public RNA-seq data from the tick species Amblyomma americanum

let us construct two distinct models for assessing differential gene expression,

though major batch effects and lack of sufficient replicates limited the number of

samples we could include in our analysis.

2. Our differential expression models let users compare variables like sex (male,

female), tissue type (whole tick, midgut, and salivary gland), and timing in the blood

meal. Users can identify gene expression patterns potentially linked to skin

pathway manipulation by comparing these variables.

3. Our interactive Shiny app provides a user-friendly platform for exploring

differential expression experiments. This application features tools for

visualization and analysis, including principal component analysis, volcano plots,

and gene count plots, and allows for results-filtering based on significance or

expression levels.

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/030/143/305/GCA_030143305.2_ASM3014330v2/
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Next steps
We’d like to improve this resource in two specific ways:

1. Updating the analysis and Shiny app to include A. americanum gene

GenBank identifiers: Currently, the transcript and gene names used in our

pipeline are the bespoke annotations assigned by intermediate tools in different

pipelines. However, GenBank recently accepted our genome-gene boundary

annotations [19]. Given this, we may update the Shiny app to include these

identifiers to make the analysis experience more consistent across public

resources. As a quick fix, we provide a mapping file that allows a user to

correspond NCBI gene identifiers to our internal gene names.

2. Adding new RNA-seq samples to the models: In March 2024, the National

Institute of Allergy and Infectious Disease released 21 new RNA-seq samples from

the mid-gut of A. americanum. As more RNA-seq samples are released, or if we

sequence samples ourselves, we could add these new samples to this analysis.

We would have to check new samples for batch effects and assess whether the

current model matrix could include more samples.

If you use our Shiny app, analysis, or any part of our code, we’d love to hear how it

works for you. Any feedback on issues or potential useful features to add is welcome.
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