
Published on Mar 07, 2023 by Arcadia Science DOI: 10.57844/arcadia-cc5j-a519

Creating reproducible
workflows for complex
computational pipelines

A workflow orchestration framework can streamline repeatable tasks

and make workflows broadly usable. From several options, we chose

Nextflow due to the ease of deploying across platforms, vibrant nf-

core community, and ability to manage and monitor workflows with

Nextflow Tower.

Contributors (A-Z)

Feridun Mert Celebi, Seemay Chou, Jase Gehring, Megan L. Hochstrasser,

Elizabeth A. McDaniel, Austin H. Patton, Taylor Reiter, Dennis A. Sun

Version 1 · Mar 31, 2025

Purpose

One of our goals at Arcadia Science is to create maximally useful computational tools,

including our workflows. To increase the usability of our science, we want to openly

share as many of these workflows as possible, while respecting the licenses of the

underlying software and our translational goals. This is challenging in the life sciences.

Computational pipelines have many individual steps, deal with varying sizes and

formats of files, and use tools from diverse language ecosystems (e.g. Python, bash,

R). This creates complications in maintaining software dependencies and compute

environments, making workflows hard to use, reproduce, and iterate on.

http://localhost:4321/user/feridun-mert-celebi
http://localhost:4321/user/seemay-chou
http://localhost:4321/user/jase-gehring
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/elizabeth-a.-mcdaniel
http://localhost:4321/user/austin-h.-patton
http://localhost:4321/user/taylor-reiter
http://localhost:4321/user/dennis-a.-sun

Key considerations
We considered three key selection criteria. Our ideal tool for creating open-source

pipelines would be:

Easily shareable with others

We want our pipelines to be accessible to others outside of Arcadia without substantial

infrastructure or configuration on their end. The ideal system would be deployable on

any computational infrastructure (e.g. local laptop, HPC, cloud providers, etc.). We did

not want to require community users to “buy in” to a platform that they are not already

using to access and use our workflows.

Workflow frameworks have emerged as solutions to these challenges [1][2][3][4]. Each

of these systems comes with benefits and drawbacks. In this pub, we share our

decision-making process for selecting Nextflow as our workflow framework for

standardized computational tasks. We have explored many tools, including but not

limited to Snakemake [4], LatchBio, Nextflow [2], and Prefect. All of these tools present

different trade-offs.

In summary, we sought a general solution within our budgetary constraints that

minimized frustrations while aligning with our scientific goals and open-science

principles. We knew our selection wouldn’t necessarily meet each requirement

perfectly, but we kept our mission of maximal utility at the center of our thought

process.

This pub is part of the project, “Useful computing at Arcadia.” Visit the project

narrative for more background and context.

A simplified template for creating Nextflow workflows is available on GitHub. Use the

template or see how we put it together.

https://snakemake.github.io/
https://latch.bio/
https://www.nextflow.io/
https://www.prefect.io/
https://research.arcadiascience.com/useful-computing
https://github.com/Arcadia-Science/nextflow-template-repository/tree/v1.0.0
https://github.com/Arcadia-Science/nextflow-template-repository/tree/v1.0.0
https://github.com/Arcadia-Science/nextflow-template/tree/v1.0.0

Reasonably cost- and time-effective

Our software team is currently small with a particular focus on building useful, focused

products. We have limited bandwidth to tackle DevOps challenges, so we wanted a

simple solution that:

�. Allowed us to run our pipelines easily on Amazon Web Services (AWS), our default

data storage and compute tool.

�. Had a straightforward integration with AWS Batch, which would allow us to run

pipelines in parallel (fast) on AWS Spot instances (cheap).

Flexible for Arcadians to learn and use

We aim to keep computation in the hands of scientists, each an expert in their

respective domains. Forcing them to learn a new language would create a huge barrier

to entry. Not only do bioinformatics tools span multiple languages in general, but our

scientists have a diverse background of languages they are familiar with. Overall our

scientists are familiar with bash, R, and Python — languages that are popular for

computing in the life sciences. Our workflow solution therefore had to be able to

execute code in these languages.

Which workflow systems did we
consider?
We considered a range of solutions, but mostly centered our conversations around

Snakemake, Nextflow, LatchBio, and Prefect. The former two are well-known workflow

solutions in the life sciences used in both academic and industrial settings, whereas

LatchBio is a new bioinformatics platform company providing compute solutions for

scientists. The software/data engineering space also developed many tools to tackle

the challenge of orchestrating the deployment of high-throughput computational

pipelines. This is why our comparison included Prefect, an open-source workflow

management tool commonly used for ETL (extract, transform, load) jobs. We

compared these solutions, keeping in mind our key considerations:

Nextflow Snakemake LatchBio Prefect

Cost

✅
Free, paid

license for

Tower*

✅
Free

😑

Free for

academics,

pay per

usage for

industry

✅
Free, paid

license for

Prefect

Cloud

Open source ✅ ✅ ✅ ✅

Easy-to-learn

language that

life scientists

are familiar

with

❌
Steep

learning

curve

😑

Make-like

DSL

✅
Python

decorators

✅
Python

decorators

Multi-

language

support

✅ ✅

😑

Yes, but

using Python

subprocess

calls

😑

Yes, but

using

Python

subprocess

calls

Easy resource

management
✅ ✅ ✅ ❌

Integrates

with AWS

Batch

✅
Tower*

makes this

more

streamlined

😑

Support with

AWS

Genomics

CLI, but has

limitations

❌
Must use

their

platform

😑

Yes, but

challenging

Easily

deployable

across diverse

platforms

✅
😑

Sort of

❌
Must use

their

platform

😑

Sort of

Actively used

by the life

sciences

community

✅ ✅

😑

Not

yet/growing

space

❌

*Seqera Labs offers Nextflow Tower (also referred to as Tower), a monitoring and

management system for launching Nextflow workflows on a variety of platforms.

What made Nextflow + Tower
the right solution for us
Taking our criteria into consideration, we chose to move forward with writing

workflows in Nextflow and deploying through AWS Batch via a paid license for

Nextflow Tower.

This solution ultimately won out because:

Nextflow integrates nicely with containerization technologies like Docker and

Singularity to encourage easy deployability across platforms

Vibrant open-source community where individuals test, develop, and share building

blocks for workflows

Straightforward to run on AWS Batch with or without Nextflow Tower

Works across languages and varying compute needs, although this comes at the

cost of a steep learning curve of a new Domain-Specific Language (DSL) and

programming paradigm

We did not pursue the other options listed above for various reasons. Although

Snakemake is widely used in the life sciences community, there were several logistical

challenges to integrating Snakemake workflows with AWS Batch to take advantage of

cost savings with parallelizing spot EC2 instances. LatchBio had a very streamlined

development and user experience. However, using LatchBio would require us to ask

downstream users to “buy in” to their platform to be able to test and use our pipelines.

This was a dealbreaker for us. Finally, similar to LatchBio, Prefect’s development

experience was great. But the lack of adoption in the bioinformatics space, coupled

with the inability to specify compute resource requirements at the task level made

Prefect a nonviable option for us. As these tools and constraints evolve, we may

reconsider our choice.

Easily deployable workflows on any platform

The Nextflow workflow system is open source and has an active community

maintaining it and providing support. By design, Nextflow encourages containerization

leveraging Docker or Singularity images. This facilitates deployment on a variety of

platforms (e.g. in the cloud, locally, or on an institution’s HPC), making our workflows

usable by others with various setups. For users who cannot use Docker or Singularity,

workflows can also specify their environments with conda.

Seamless monitoring and management of AWS

Batch jobs with Tower

The main draw of Nextflow was the ability to use Nextflow Tower, an intuitive GUI that

provides seamless integration with AWS Batch and built-in monitoring and

management of AWS Spot instances. Note that Tower is not required to use any

workflows — it is just a complementary layer that facilitates the execution and

distribution of workflow processes across a variety of systems, not just AWS Batch. By

using Tower, we can more easily integrate with AWS Batch and tap into cost savings

with spot-instances without a lot of overhead, all while enabling non-expert users to

interactively launch pipelines through the Tower GUI.

We purchased a license for Nextflow Tower that enables us to have three power users

and three launchpad users, where power users can both configure compute

environments and launch workflows, and launchpad users can only launch workflows.

Originally, our idea was to enable all scientists at Arcadia to be able to launch their own

workflows using the Tower GUI. However, this was extremely cost-prohibitive. Instead,

we now use the Tower API and Tower launch hooks to automate the launch of our

workflows while maintaining Tower for management and monitoring purposes. You can

find an example implementation of this on Seqera’s blog or our seqqc pipeline [5].

Vibrant nf-core community and resources

Nextflow has a vibrant community and resources like trainings, hackathons, and a

Slack space for peer learning, all available through nf-core [6]. Most importantly, nf-

core provides helper tools for setting up new workflows with a template and integrating

community-sourced modules to streamline the development process. Nextflow

modules are typically individual steps used in a larger workflow, so having a

community-maintained repository of repeatedly used modules to integrate into

different workflows is a nice feature. Similarly, community-developed and maintained

https://help.tower.nf/22.4/pipeline-actions/overview/#tower-launch-hooks
https://seqera.io/blog/workflow-automation/
https://github.com/Arcadia-Science/seqqc/tree/master/cron

workflows (such as nf-core/MAG [7] and nf-core/viralrecon [8] make it easy to apply

quick, existing solutions to data.

This wealth of resources signaled active use of Nextflow by the broader community,

suggesting that our workflows could be useful to others outside of our organization.

Challenges and lessons learned
Overall, we grappled with choosing a workflow system for quite a while before

eventually deciding to dive into using Nextflow and Tower. However, we leaned on our

operating principles, including “When in doubt, just try the experiment” and “No

decision is truly irreversible,” and moved forward since this solution met most of our

requirements. We have already started to write and launch Nextflow workflows with

Tower using AWS cloud computing for our standardized work.

As mentioned above, no tool is perfect and its usage is context-dependent. Here, we’ll

describe some challenges that we have run into building Nextflow pipelines and how

we’ve solved them.

Navigating learning curves

One of the greatest challenges to institutionalizing the use of Nextflow at Arcadia has

been its relatively steep learning curve. We know this because we ran a small

experiment with one of our target scientists to assess exactly how steep that curve

could be, time-wise. In short, this took a lot of time for several reasons.

First, stitching together distinct modules requires the developer to know both the

workflow logic as well as all relevant coding languages. Most of our computational

scientists are familiar with bash, R, and Python programming languages for data

exploration and formal analysis, whereas Nextflow is written in Groovy, a superset of

Java. Although you don’t have to know all of the ins and outs of Groovy to write

Nextflow workflows, it can be extremely challenging to learn a new programming

paradigm (flow-based programming via channels) and a DSL.

Second, implementing this solution with our AWS setup requires workflows to be

containerized via Docker or Singularity, which requires our scientists to adopt a

https://research.arcadiascience.com/useful-computing#operating-principles

different mental model for putting together workflows than they might previously be

used to. Granted, most cloud-based solutions require containerization, not just

Nextflow. We have plans to address some of these topics so any scientist can

eventually feel comfortable with these tasks through our internal Arcadia Users’ Group

(AUG) for peer-led teaching and learning of computational skills.

While there was a time cost for navigating the above problems, more quantitatively

defining that cost did provide a helpful constraint for thinking about when this effort

might be worthwhile.

Highly flexible, once configured

One of the biggest reasons we chose Nextflow was the numerous resources available

through the nf-core community. We mostly find the nf-core helper tools useful for our

work, but there are issues we’ve had to grapple with. We were initially thrilled with how

seemingly fast one could get up and going with a new Nextflow workflow by using the

nf-core tools to create a template workflow and add premade modules. However, we

realized that there are significantly more options that the nf-core helper tools give a

user to make a Nextflow workflow than what the average user of Nextflow wants to do.

Although this complexity may be helpful for developers familiar with Nextflow, it can

also be intimidating to new users.

This led us to build a pruned, simplified template to reduce the cognitive load on our

scientists in developing their workflows. This approach allows us to deploy smaller

additions in shorter time periods.

Try the template for yourself [DOI: 10.5281/zenodo.7690294], or check out how

we built it [DOI: 10.5281/zenodo.7690298].

Making this decision for yourself
There are so many workflow systems to choose from that it can feel impossible to

narrow it down to one solution. Even though Arcadia has unique open-science

constraints, our decision ultimately wasn’t influenced by this alone. Being able to

https://training.arcadiascience.com/
https://github.com/Arcadia-Science/nextflow-template-repository
https://github.com/Arcadia-Science/nextflow-template-repository/tree/v1.0.0
https://doi.org/10.5281/zenodo.7690294
https://github.com/Arcadia-Science/nextflow-template/tree/v1.0.0
https://github.com/Arcadia-Science/nextflow-template/tree/v1.0.0
https://doi.org/10.5281/zenodo.7690298

reproduce computational work internally is an important part of performing rigorous

scientific research.

If you are weighing options, consider some lessons we have learned that you could

take into consideration for your team or organization:

�. What are your available computing resources and constraints?

These can include how much physical space you have, cost restrictions, the size

of your team, time available to spend on DevOps, etc.

�. What types of pipelines do you plan to implement?

Will these pipelines use a single language? Will they need varying amounts of

compute power? How often will you want to run these pipelines?

�. How broadly reusable do you want your pipelines to be?

For example, Nextflow is highly parameterized and modular so that little pieces

can be reused across different workflows, which differs from other solutions, such

as Snakemake.

�. Who is the intended audience for your workflows?

Different solutions make sense depending on the usage needs of your resulting

pipelines.

�. What are the people around you at your organization already familiar with or

comfortable picking up?

Successfully implementing a new workflow system in your organization is partly

dependent on being able to find support from others around you when you run into

issues.

What’s next?
Overall, it is an exciting time for bioinformatics tooling with multiple options in this

space for streamlining standardized workflows and many up-and-coming solutions.

Watch this space as we release workflows to meet the needs of our current science.

We designed our first workflow to perform quality checks and analyze sequencing data

to ensure basic standards are met before making our data publicly available and

continuing with downstream analyses [5].

https://research.arcadiascience.com/useful-computing
https://research.arcadiascience.com/pub/resource-seqqc

Acknowledgements We thank Kelsey Florek at the Wisconsin State Lab

of Hygiene for early discussions about Nextflow and

Nextflow Tower that helped kickstart our work!

We thank Jaclyn Taroni and Josh Shapiro at the

Childhood Cancer Data Lab for early discussions

about their experience with Nextflow!

References
Reiter T, Brooks† PT, Irber† L, Joslin† SEK, Reid† CM, Scott† C, Brown CT,

Pierce-Ward NT. (2021). Streamlining data-intensive biology with workflow

systems. https://doi.org/10.1093/gigascience/giaa140

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. (2017).

Nextflow enables reproducible computational workflows.

https://doi.org/10.1038/nbt.3820

Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, Ménager H, Soiland-

Reyes S, Gavrilovic B, Goble C. (2021). Methods Included: Standardizing

Computational Reuse and Portability with the Common Workflow Language.

https://doi.org/10.48550/ARXIV.2105.07028

Köster J, Rahmann S. (2012). Snakemake—a scalable bioinformatics workflow

engine. https://doi.org/10.1093/bioinformatics/bts480

Chou S, Reiter T. (2024). Speeding up the quality control of raw sequencing data

using seqqc, a Nextflow-based solution. https://doi.org/10.57844/ARCADIA-

CXN6-CH62

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di

Tommaso P, Nahnsen S. (2020). The nf-core framework for community-curated

bioinformatics pipelines. https://doi.org/10.1038/s41587-020-0439-x

1

2

3

4

5

6

https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1038/nbt.3820
https://doi.org/10.48550/ARXIV.2105.07028
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.57844/ARCADIA-CXN6-CH62
https://doi.org/10.57844/ARCADIA-CXN6-CH62
https://doi.org/10.1038/s41587-020-0439-x

Krakau S, Straub D, Gourlé H, Gabernet G, Nahnsen S. (2022). nf-core/mag: a

best-practice pipeline for metagenome hybrid assembly and binning.

https://doi.org/10.1093/nargab/lqac007

Harshil Patel, Varona S, Monzón S, Espinosa-Carrasco J, Heuer ML, Nf-Core Bot,

Underwood A, Gabernet G, Ewels P, MiguelJulia, Kelly S, Stevin Wilson, , Erika,

Sameith K, Garcia MU, Jcurado, Menden K. (2022). nf-core/viralrecon: nf-

core/viralrecon v2.5 - Manganese Monkey.

https://doi.org/10.5281/ZENODO.6827984

7

8

https://doi.org/10.1093/nargab/lqac007
https://doi.org/10.5281/ZENODO.6827984

