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Equivalent linear
mappings of deep
networks are a promising
path for biology

Deep networks make accurate predictions, but their nonlinearity

makes them a black box, hiding what they have learned. Here, we

look inside the black box and analyze the exact relationships they

learn for UMAP embeddings and epistasis in a genotype–phenotype

dataset.
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Deep networks are increasingly popular in biology, but their fundamental nonlinear

character makes it difficult to extract what input–output relationships they have

actually learned. We describe a method for finding an equivalent linear mapping for a

deep network given a specific input, and apply this to UMAP embeddings and

epistasis in genotype–phenotype relationships.
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A fundamental challenge in machine learning is the black-box nature of nonlinear

models. Models can be optimized to make accurate predictions across a wide range

of datasets and problems, but we cannot always understand the relationship a model

has learned between the input features and the output prediction. There has been

constant progress on feature importance methods that capture approximate

contributions, including Grad-CAM [3], Integrated Gradients [4], LIME [5], and SHAP

[6]. While useful, these methods always come with the “approximate” warning flag, as

nonlinear functions can behave differently than their linear approximations.

In parallel, there have been less visible efforts toward local linear descriptions of deep-

network models that capture the exact relationship between input features and output

predictions as equivalent linear mappings (ELMs). “Analysis of deep neural networks

with the extended data Jacobian matrix” [7] identified and explored this intriguing

property. For simple deep networks consisting of only linear layers with zero bias and

The equivalent linear mapping method enables the use of powerful deep networks to

accurately learn complex relationships, while also allowing for the straightforward

interpretation of which gene features give rise to specific output representations.

This perspective piece is intended for both practitioners interested in interpretability

for machine learning and biologists skeptical of the scientific utility of machine

learning methods. We would be pleased to receive feedback from anyone who could

make use of this approach for their own datasets, and especially whether it results in

deeper insights into the structure of the data itself or the biological processes that

underlie the system of interest.

Check out companion pubs showing how to use equivalent linear mappings for

interpreting globally nonlinear models for gene expression [1] and genotype–

phenotype data [2].
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ReLU activations, the Jacobian for a particular input, computed numerically with

autograd, yields a linear system that exactly reproduces the output of the globally

nonlinear deep network. The manifold of the output in the input space is piecewise

linear. This method has been extended to convolutional networks with ReLU

activations for image generation [8][9] and to large language models with Swish or

GELU activations and softmax attention [10], although these gated activations make

the model “point-wise” linear as opposed to piecewise linear.

The ELM method leverages the full expressive power of deep networks but does not

sacrifice quantitative interpretation of input features. If a linear model is held up as one

ideal for interpretability (which itself is open to debate [11]), then the Jacobian method

for a piecewise or pointwise linear network is a solid step in this direction. Instead of

interpreting a nonlinear network, we must interpret a large collection of linear models

for each input of interest. This is a shift from an extremely difficult mathematical

problem to a challenging data problem.

We recently posted two new publications, “From black box to glass box: Making UMAP

interpretable with exact feature contributions” and “A quantitative-genetic

decomposition of a neural network”. While there are many techniques for quantifying

the contributions of genes in linear genotype–phenotype models and for computing

approximations of this in nonlinear models, the ELM approach used in these

publications maps the prediction of a deep network to an equivalent set of linear

weights for a given input point.

We used standard deep networks with some simple constraints such that the network

is locally linear with respect to the input features. By holding the bias terms of each

linear layer to zero and using ReLU or leaky ReLU activations, the Jacobian matrix for a

specific input (computed numerically with autograd) exactly reconstructs the network

output, with reconstruction error approaching machine precision. This class of

networks is linear at a given input point, but nonlinear between input points, which

allows for both predictive power and clear feature interpretations from the Jacobian

reconstruction. This is a technique that has not yet been widely used for genotype–

phenotype prediction.
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Exact feature contributions for UMAP

In “From black box to glass box: Making UMAP interpretable with exact feature

contributions,” we used the Jacobian to quantify how a trained deep network

transformed a cell’s normalized expression levels to a position in the embedding

space. The conventional approach to quantifying feature contributions is to carry out

differential expression on a given cluster formed from a UMAP embedding, but with

the ELM method, we can directly measure what gene features the UMAP network uses

to embed each cell’s expression vector. These features are computed for individual

cells but can be averaged over labels to identify which genes drive the formation of

clusters labeled with categories such as cell type.

ELMs and quantitative genetics

In “A quantitative-genetic decomposition of a neural network,” we used simulated data

to show how the feature contributions captured by the Jacobian of a neural network

through ELM can be used to estimate classical quantitative genetics parameters. We

first demonstrated that by averaging the Jacobian over all test set points, we can

accurately back out the ground truth additive effect sizes. This was encouraging, but

given that we have a method that identifies different sets of linear features for each

input point, could it also reveal pairwise epistatic interactions? We found that by

iterating over pairs of loci and averaging the Jacobian over all possible genotypic

combinations, we could infer epistatic interaction coefficients with high fidelity. This

was true for phenotypes with a variety of genetic architectures and environmental

noise levels, suggesting that this method should be broadly applicable to genotype–

phenotype mapping.

By constraining a few aspects of the deep network architecture with no cost to its

performance, we use the Jacobian to reveal equivalent linear relationships for each

point in the dataset. This augmentation of the modeling pipeline enables a

straightforward and principled approach to uncovering both locally linear and globally

nonlinear relationships.



Beyond genotype–phenotype mappings, we hope to apply this technique to other

areas of interest to Arcadia, including the interpretation of protein language models

and the analysis of high-dimensional phenotypic data.

10.57844/arcadia-tnr4-7n9h

10.57844/arcadia-v4qf-vw3k

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. (2016). Grad-

CAM: Visual Explanations from Deep Networks via Gradient-based Localization.

https://doi.org/10.48550/ARXIV.1610.02391

Sundararajan M, Taly A, Yan Q. (2017). Axiomatic Attribution for Deep Networks.

https://doi.org/10.48550/ARXIV.1703.01365

Ribeiro MT, Singh S, Guestrin C. (2016). “Why Should I Trust You?”: Explaining the

Predictions of Any Classifier. https://doi.org/10.48550/ARXIV.1602.04938

Lundberg S, Lee S-I. (2017). A Unified Approach to Interpreting Model

Predictions. https://doi.org/10.48550/ARXIV.1705.07874

Wang S, Mohamed A-R, Caruana R, Bilmes J, Philipose M, Richardson M, Geras

K, Urban G, Aslan O. (2016). Analysis of deep neural networks with the extended

data Jacobian matrix. https://proceedings.mlr.press/v48/wanga16.html

Mohan S, Kadkhodaie Z, Simoncelli EP, Fernandez-Granda C. (2019). Robust and

interpretable blind image denoising via bias-free convolutional neural networks.

https://doi.org/10.48550/ARXIV.1906.05478

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S. (2023). Generalization in diffusion

models arises from geometry-adaptive harmonic representations.

https://doi.org/10.48550/ARXIV.2310.02557

1

2

3

4

5

6

7

8

9

https://doi.org/10.48550/ARXIV.1610.02391
https://doi.org/10.48550/ARXIV.1703.01365
https://doi.org/10.48550/ARXIV.1602.04938
https://doi.org/10.48550/ARXIV.1705.07874
https://proceedings.mlr.press/v48/wanga16.html
https://doi.org/10.48550/ARXIV.1906.05478
https://doi.org/10.48550/ARXIV.2310.02557


Golden JR. (2025). Equivalent Linear Mappings of Large Language Models.

https://openreview.net/forum?id=oDWbJsIuEp

Lipton ZC. (2016). The Mythos of Model Interpretability.

https://doi.org/10.48550/ARXIV.1606.03490

10

11

https://openreview.net/forum?id=oDWbJsIuEp
https://doi.org/10.48550/ARXIV.1606.03490

