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Graph neural networks: A
unifying predictive model
architecture for
evolutionary applications

The transition from explanatory to predictive models in evolutionary

biology is a significant and challenging task. We propose that graph

representations and graph neural networks may play a crucial role in

this transition.
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Purpose
Neural networks are increasingly used in evolutionary biology research. Despite this

burgeoning interest, most work uses just a few model architectures. This bias matters:

the alignment of data structure, task, and architecture influences predictive and

explanatory outcomes.

We propose that graph neural networks (GNNs), a comparatively underutilized

architecture, are uniquely well-suited for evolutionary applications. We detail how

GNNs leverage relational structures embedded in evolutionary data where other
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Explanatory vs. predictive models in
evolution
Evolutionary biologists are driven to answer fundamental questions about how the

world works. What led to the adaptive radiation of Darwin’s finches [1]? What facilitated

the repeated speciation and parallel ecological divergence between limnetic and

benthic freshwater threespine sticklebacks [2]? Does epistasis increase or decrease

phenotypic diversity [3]? Evolution is, historically speaking, the domain of explanatory

rather than predictive models.

For example, when studying macroevolution, it’s common to interpret real data by

fitting idealized models of evolution (e.g., Brownian motion (BM) or Ornstein-Uhlenbeck

(OU) [4]) to them. Doing so has helped advance our understanding of a number of

phenomena, such as resolving how species diversification along ecological gradients

can underlie adaptive radiations (e.g., Anolis lizards [5]). However, the features driving

these models’ explanatory power also restrict their predictive utility.

Though providing valuable biological insight, explanatory model design inherently

limits their ability to predict unobserved or future outcomes. This mismatch between

model intention and application isn't a shortcoming per se — these models were never

intended to enable accurate prediction. It does mean, however, that when explanatory

models are applied to predictive tasks, they rely on overly simplistic assumptions that

maintain interpretability yet harm predictive capabilities. This issue isn't unique to

evolutionary biology (for discussions, see [6] & [7]). For instance, phylogenetic

imputation methods use explanatory models like BM or OU to predict missing trait

values, constrained by assumptions such as constant rates of trait evolution across

architectures can’t. We review example applications and discuss promising avenues

where GNNs could advance evolutionary research. Our goal is to highlight the value of

GNNs and encourage other evolutionary biologists to leverage the full extent of their

utility.

All associated code and data are available in this GitHub repository.

https://github.com/Arcadia-Science/2025-gnn-evo-architecture


lineages and through time [8]. Dedicated predictive modeling frameworks tailored to

evolutionary biology are needed.

Accordingly, evolutionary biologists have increasingly turned to machine learning

frameworks more amenable to predictive tasks, particularly neural networks (NNs)

(Figure 1, A–B) [9][10][11]. By leveraging multiple interconnected layers of artificial

neurons, NNs can learn complex, non-intuitive relationships within data [12][13].

Despite challenges to interpretability, NNs' predictive capabilities make them highly

valuable statistical tools, especially given the intricate and subtle patterns often

present in biological data.

Convolutional neural networks (CNNs: Figure 1, C–D) have become the dominant

architecture used in evolutionary biology. CNNs specialize in grid-structured data,

such as images and sequences, leveraging spatial autocorrelation through

convolutional kernels. Somewhat famously, CNNs have been shown to be

“unreasonably effective” for population genetics inference, matching or exceeding

existing explanatory models [14].

However, only some biological data are structured appropriately for CNNs, and

restructuring comes with trade-offs. For example, genetic data are often converted

into 2D "images" despite biologically irrelevant structuring in one input dimension,

potentially limiting predictive accuracy and efficiency. Data preprocessing such as this

can have an outsized impact on CNN performance [15]. While 1D CNNs offer a more

natural and appropriate fit for linear genomic data — and have been successfully

applied across a range of population genetic tasks — both 1D and 2D CNNs require

input to conform to a regular grid. This requirement restricts possible applications

since biological systems are often better represented as irregular non-Euclidean

relational structures. Thus, although effective in some cases, the widespread use of

CNNs may reflect convenience and historical precedent as much as innate

architectural suitability.



Trends in the use of neural networks (NNs) in ecology and evolution (data

from [9]) through 2021.

(A–B) Count of publications using each architecture type, considering all data

types.

(C–D) Count of publications using each architecture type, considering only

studies using molecular data.

In all panels, any publication that used more than one architecture type is

counted once per architecture. DNN: deep neural network, CNN: convolutional
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neural network, RNN: recurrent neural network, VAE: variational auto-encoder,

GAN: generative adversarial network.

NOTE: The trends shown here are meant to be exemplars — we have not

extended this literature review to the present day.

So, is there a model architecture better suited for evolutionary data? This is an

important question. Model architectures often act like Bayesian priors, each with

unique inductive biases. Architectures can impose constraints on what models expect

to see and, ultimately, what and how they learn. Effective alignment can simplify the

learning task and improve predictive performance, particularly in small datasets

common in biology. CNNs have succeeded in population genetic applications

because genetic autocorrelation is amenable to convolution. But is there an alternative

architecture better suited to the relational structures that evolution produces?

Evolution: It’s graphs on graphs
We think the answer may be graphs. From phylogenies (bifurcating graphs) to

ancestral recombination graphs (ARGs) to interaction networks and genotypic fitness

landscapes, a vast swath of biology can be meaningfully represented as graphs.

Moreover, graphs may provide the key to spanning from microevolution to

macroevolution by drawing connections between biological scales. This puts on the

table the possibility of a universal evolutionary representation, from proteins to genes

and species, even ecological communities, each represented as hierarchically nested

graphs (Figure 2).



Graphs are a unifying biological data structure across scales, from

macroevolution to microevolution.

(Top) Species trees (phylogenies) are fully bifurcating graphs that represent the

relationships among extant species (terminal nodes) and their common

ancestors (internal nodes) through descent with modification.

(Middle) A gene family tree — structured similarly — depicts the relationships

among homologous gene copies possessed by the same species as in the

species tree.

(Bottom) Proteins encoded by each homologous gene copy (and their common

ancestors) in this gene family can be meaningfully and richly represented as

protein residue graphs, where nodes correspond to amino acids, and edges

Figure 2



correspond to interacting or spatially proximal residues, capturing detailed

structural and physicochemical information.

Why is this the case? Because evolution through descent with modification induces a

graph-like relational structure in biological data. We often represent these

relationships as phylogenetic trees wherein each species or gene corresponds to a

node interconnected through edges representing common ancestry. Ultimately, a

phylogeny is inherently a regular, fully bifurcating graph. Similarly, genetic structures

such as ARGs explicitly capture the complex histories of genomic segments across

populations and recombination events [16]. Furthermore, ecological networks

depicting species interactions like predation, mutualism, competition, or gene

regulatory networks depicting complex genetic pathways are also naturally expressed

as graphs. This ubiquity underscores graph representations' inherent suitability and

explanatory power for evolutionary and ecological questions.

Given the inherent suitability of graph structures to address questions in ecology and

evolution, we’re thus prompted to ask: Is there a predictive model architecture capable

not only of handling such non-Euclidean, graph-structured data but also managing —

and even exploiting — the complex nested hierarchical structures induced by

evolutionary processes? After all, it’s previously been shown that CNN architectures

aligned to image data markedly outperform non-convolutional NNs [17][18], and

architectures specialized for non-Euclidean data lead to improved outcomes by

inherently respecting the data’s geometry [19]. Could leveraging graph-based

approaches thus bridge explanatory and predictive paradigms, harnessing the

inherent relational structure of evolutionary data to improve both biological

understanding and predictive accuracy?

Introducing graph neural networks
Yes! The solution we propose lies in graph neural networks (GNNs: [20]). Graph neural

networks are exactly what they sound like — a neural network architecture specifically

designed to process and learn from graph-structured data comprising nodes

(individual entities or observations) and edges (Box 1). GNNs can be used for a variety

of prediction tasks: node regression/classification (e.g., variant effect prediction), edge

prediction (e.g., phylogenetic inference), and graph regression/classification (e.g.,



gene-regulatory network functional classification). Given that graph-structured data is

abundant in biology, the potential of GNNs is vast.

Why might GNNs work so well? For one, all GNNs use message passing to aggregate

information from neighboring nodes along edges, thus allowing the model to learn

complex local relationships in the data in a manner explicitly informed by graph

structure [21]. In effect, this assumes that nodes that are closer to and more

connected to one another in a graph are more similar to each other. Why might we

care about this as evolutionary biologists?

Because this message-passing mechanism functionally leverages something that's

both the bane and boon of any evolutionary comparative study — evolutionary non-

independence. Descent with modification renders biological samples statistically non-

independent "evolutionary pseudoreplicates," as demonstrated compellingly in

Felsenstein's seminal 1985 publication "Phylogenies and the Comparative Method"

[22]. Thankfully, there now exists a wealth of statistical methods based on explanatory

models that explicitly use the inferred phylogeny to account for evolutionary non-

independence [4]. Just as accounting for evolutionary non-independence is essential

to the adequacy and performance of explanatory models, so will it be for predictive

models. In fact, we're likely to push these models even further by explicitly making the

model aware of that evolutionary non-independence by baking it into the model

architecture and data representation. GNNs provide us with the key to do so.

GNNs are also exceptionally flexible. For example, message-passing can incorporate

convolution (as in graph convolutional networks; GCNs [23]) or attention mechanisms

(as in graph attention networks; GATs [24]) to more fully learn complex relationships

present in the data at both local and global scales. Furthermore, many common neural

architectures are special cases of GNNs: CNNs are a special case of GCNs on regular

grids, RNNs are a special case of GNNs on sequential chain graphs, and transformers

[25] are a special case of GATs with fully connected attention graphs.

Thus, while CNNs have been undeniably useful — particularly in population genetic

contexts with spatially or sequentially structured (i.e., Euclidean) genomic data — GNNs

offer even broader flexibility. This flexibility is reassuring. Biological data frequently

exhibit relational complexity beyond simple adjacency or grid-like structures. GNNs

inherently accommodate these complexities, making them highly versatile tools. In the

following section, we discuss several applications that have been particularly fruitful

and propose a couple of promising future applications.



Box 1. Useful GNN terminology.

GNNs are suited to multiple different levels of prediction tasks, ranging from

node classification to link prediction, community detection/graph clustering,

graph classification/regression, graph generation, and more. For a more detailed

review of the architecture, please see [20].

Graphs are constructed from an adjacency matrix and may either be

undirected, meaning information may flow in either direction along an edge, or

directed, meaning information flows only in one direction.

Graphs may be either homogeneous, meaning all nodes and edges are of the

same type, or heterogeneous, meaning multiple types of nodes or edges may

be represented in a single graph.

Nodes in a graph correspond to individual entities within a graph. They may be

represented by a set of node features and belong to one or more classes —

these could be anything from distinct species to genes, proteins, or amino acids.

Edges may be similarly characterized by edge attributes, representing

branches in a phylogeny, orthologous relationships, or physical distances among

atoms in a protein structure.

Graph-level attributes characterize properties of the graph as a whole, such as

the identity of a given gene family, biological process, or protein activity.

Message passing [21] is the mechanism all GNNs use to aggregate information

from each node's immediate neighbors to update node feature representations

(i.e., a local neighborhood aggregation function).

Graph convolution [23] extends the convolution mechanism implemented in

CNNs to non-Euclidean graph data.

Graph attention [24] leverages self-attention to allow the contribution of each

node's neighbors to feature updates to vary, scaling according to their learned

importance.

Transformers [25] are a special case of attention-based GNNs wherein global,

multi-headed attention forms a fully connected graph, thus creating a global



neighborhood aggregation function.

GNNs in practice

Population genetic inference

As discussed previously, an early application of neural networks to evolution was the

use of CNNs for population genetics. How do GNNs stack up here? Recent work [26]

has found that a GCN matches and often exceeds CNN performance on population

genetic tasks, particularly at identifying genomic regions under selective sweeps.

Notably, the GCN achieves this performance with nearly two orders of magnitude fewer

parameters than the CNN (~200 thousand parameters compared to ~21 million). This

disconnect between model size and performance supports our earlier suspicion: that

using an architecture aligned with the data structure indeed helps to learn more, and

from less.

What about GNNs makes them suited for these tasks? The data used here — tree

sequences — are highly efficient representations of genomic data that capture the

changing evolutionary relationships among samples while walking along the genome

[27]. These tree sequences approximate ARGs, complex graph structures capturing

recombination and coalescent histories [16]. The message-passing framework

inherent to GNNs allows for adaptive weighting of neighbors, enabling them to

selectively integrate relevant local signals such as lineage-specific demographic

events or recombination hotspots that are otherwise obscured by fixed receptive fields

in CNNs. Indeed, recent studies have applied GNNs directly to ARGs, proving helpful in

estimating demographic histories and identifying regions subject to selection under

complex population scenarios [28].

Thus, using evolutionarily meaningful, graph-structured data, GNNs can infer

everything from demographic history to the genomic landscape of natural selection

and introgression/horizontal gene flow. While CNNs remain useful for specific

structured genomic data tasks, the flexibility and general applicability of GNNs

position them as a potentially superior choice across a broader range of population

genetic and evolutionary biology problems. Despite these initially promising

demonstrations, we emphasize that we have only begun to scratch the surface of

GNN's potential for population genetic problems.



Diversification dynamics

GNNs may also be helpful for the inference of diversification dynamics using

phylogenetic trees (e.g., for understanding speciation/extinction or mapping pathogen

transmission dynamics [29][30][31]). Historically, this work has disproportionately

relied upon birth–death (BD) and coalescent models. Both model types are highly

interpretable. For instance, BD models employ just two primary parameters: birth (λ),

corresponding either to speciation or transmission events, and death (µ),

corresponding either to extinction or loss of infected individuals, respectively.

The interpretability of these models has had immense practical value. During the

COVID-19 pandemic, BD and coalescent models applied to SARS-CoV-2 phylogenies

provided early and critical insights into the epidemiology of this novel infectious

disease, directly informing public health decisions [32][33][34][35]. Beyond COVID-

19, the application of these models has long been a critical component of coordinated

responses to infectious disease outbreaks [36]. For example, they've historically been

instrumental in identifying emerging seasonal influenza strains around which vaccines

are developed and assessing vaccine efficacy (e.g., [37]).

So, how can GNNs propel the field forward? Phylodynamics is a field where many

explanatory models have been useful for prediction tasks almost by coincidence. We

can move beyond this, however. For instance, GNNs could explicitly leverage the

temporal structure of pathogen phylogenies to simultaneously model shifts in

transmission dynamics and predict the emergence of epidemiologically important

variants, something traditionally challenging for simpler models.

Initial applications of GNNs to phylodynamic problems have demonstrated substantial

promise, notably in classifying transmission clusters [38][39]. However, there are

several immediate areas where GNNs could be refined for this application, such as

comprehensive epidemiological parameter estimation. Interestingly, a comparative

study evaluating macroevolutionary diversification parameter estimates (speciation

and extinction) noted that other neural network architectures often outperformed

GNNs [40]. However, these GNNs lacked features that improve performance, such as

skip connections or attention-based graph convolutional layers. Thus, given the

inherent flexibility of GNN implementations, a more comprehensive exploration of

possibilities will be of interest here (as elsewhere).



Phylogenetic imputation and ancestral state

reconstruction

Finally, GNNs may be uniquely well-suited to common tasks in comparative biology,

such as trait imputation and ancestral state reconstructions. For example, ancestral

state reconstruction is one of the most common use cases of phylogenetic

comparative methods in evolutionary studies. Writ large, this includes the inference of

everything from geographic ranges [41] and quantitative or discrete phenotypes [42]

to even protein sequences [43] of the common ancestors of extant species.

Many of these tasks are built on a common methodological approach we stereotype

here (for a review, see [44]). First, an explanatory model of how a trait has evolved is fit

to a reconstructed phylogeny and trait data for a set of species. The fitted model is

then used to probabilistically reconstruct trait values at the internal (ancestral

reconstruction) or terminal (phylogenetic imputation) nodes, returning the most likely

values based on the model parameters. Although intuitive, this approach can lead to

biased or incorrect trait estimates, as commonly used models make unrealistic

assumptions, such as constant evolutionary rates through time and shared rates

across species.

GNNs, on the other hand, have the potential to model more realistic evolutionary

scenarios. For instance, using a combination of graph convolution and graph attention,

GNNs may be capable of flexibly and accurately modeling the underlying

heterogeneity of evolutionary rates. Additionally, if modeling the evolution of multiple

traits, GNNs may be able to capture additional complexity and nuance in patterns of

correlated trait evolution that are typically out of reach of standard models. Last,

mechanisms like jumping knowledge [45] may help GNNs to flexibly integrate

information from both local and global phylogenetic neighborhoods to model and

learn where saltational jumps in trait evolution occur. Fortunately, sophisticated

simulation tools are readily available, enabling researchers to create realistic

evolutionary scenarios for effective GNN training (e.g., [46][47][48][49]). Thus, while

simulation quality remains essential, GNNs are an optimally structured architecture to

handle these predictive tasks efficiently and accurately.



Tip of the iceberg
We have only begun to scratch the surface of the potential utility of GNNs for

application to questions and subjects in evolutionary biology. Entire publications could

be written about each. From the potential of GNNs to directly infer phylogenetic trees

themselves (e.g., [50]) from genetic sequence data to predicting protein–protein

interactions (e.g., [51]) and facilitating the inference of orthology at deep evolutionary

time scales, the number and diversity of prospective use cases are vast. Excitingly, in

many cases, we're beginning to see this exploration unfold, though we emphasize that

it's just that — only the beginning. Ultimately, the creativity of implementation and

thoughtful application, more than innate architectural limitations, will likely determine

the success of GNNs in evolutionary biology.

Although outside of the scope of this pub, we encourage readers to familiarize

themselves more with the technical details of how GNNs are implemented and how

different individual architectural components may play key roles in their success and

performance for any given application [20]. For instance, just as we've seen with the

rampant success of the transformer architecture [25] in the context of large language

models, it seems incredibly likely that GNN architectures that incorporate some form

of attention mechanism will be vitally important to capture the complexity inherent to

biological data. Furthermore, we emphasize that models needn't rely on a single

architectural type. For instance, one recent study successfully combined protein

language models with GNNs to enable the prediction of essential genes in metazoans

[52].

In many cases, the primary utility of GNNs may be in bridging across architectures —

explicitly building in the hierarchical relationships induced by evolution through

descent with modification (e.g., Figure 2). Building sophisticated, complex hierarchical

models such as these spanning biological scales is undoubtedly challenging, but

GNNs present an explicit means by which to do so (e.g., [53][54]). Still, the value

gained from more completely building in the evolutionary structure we know to exist in

our models may be transformative. Ultimately, the boundary to GNN success in

evolutionary biology lies primarily in our creativity and ingenuity in leveraging this

powerful architecture.



Methods
We downloaded the supplementary table from Borowiec et al., 2022 [9] (found here)

and converted it to a tab-separated text file. We loaded these data into R (v4.3.3),

processed them, and visualized outputs with the following packages: readr (v2.1.5),

dplyr (v1.1.4), tidyr (v1.3.1), stringr (v1.5.1), ggplot2 (v3.5.1) [55], reshape2 [56] (v1.4.4),

cowplot (v1.1.3), and arcadiathemeR (v0.1.0) [57]. We excluded publications for which

the entry for Architecture (i.e., the NN architecture used in the study) was “NA,” as

these corresponded to review articles, as well as studies for which the architecture

was "unknown." We counted each type once when multiple architecture types were

used in a single study. For example, if a study used both a convolutional neural network

and a recurrent neural network, we incremented the count for both architectures by

one for that year.

We used ChatGPT to help write code and provide suggestions to restructure writing.

Code and data are available in our GitHub repo (DOI: 10.5281/zenodo.15693531).
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