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How can we biochemically
validate protein function
predictions with the Ras
GTPase family?

We’re using the well-studied superfamily of small monomeric

GTPases, the Ras GTPases, to evaluate our structure-based

clustering tool, ProteinCartography. We’re seeking feedback on

working with this protein family and determining which individual

proteins to study.
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Purpose

ProteinCartography is a tool for computational comparison of protein structures

across species [1]. It uses the sequence and structure of an input protein to identify

similar proteins. It then produces clusters of structurally similar proteins, displayed in

an interactive map. We’ve outlined a rough plan to biochemically validate the two

foundational hypotheses underlying the pipeline [2].
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Background

Why use RasGTPases?

For our first round of validation, we want to focus on protein families that will help us

test our foundational hypotheses in a straightforward way. We started our search for

candidate protein families by looking at the 200 most-studied human proteins in the

Protein Data Bank, as these have likely been purified and biochemically studied

The first step of this plan was to select protein families for analysis. We selected the

Ras GTPase superfamily because it’s previously been biochemically analyzed and

because it presented many opportunities to test our foundational hypotheses [2].

Here, we present our ProteinCartography results for the Ras GTPases.

We’d like feedback on how we should select individual clusters and proteins and how

we might test the function of this protein across species in vitro. We’d particularly love

to hear from those who’ve studied Ras GTPases.

This pub is part of the platform effort, “Functional annotation: mapping the

functional landscape of proteins across biology.” Visit the platform narrative for more

background and context.

This pub is part of our validation strategy series of pubs that starts with “A strategy

to validate protein function predictions in vitro.” We’re also considering

deoxycytidine kinases as an orthogonal protein family for validation. To learn more

about them, visit the accompanying pub [3].

The ProteinCartography pipeline used to run these analyses is available in this

GitHub repo. To create the custom overlays, we used this notebook and added our

custom color dictionaries, which can be found in the associated Zenodo

repositories.

The data associated with this pub, including the full ProteinCartography analysis for

the Ras GTPase family, can be found in this Zenodo repository.

https://research.arcadiascience.com/annotation
https://research.arcadiascience.com/annotation
https://research.arcadiascience.com/pub/idea-how-to-validate-proteincartography/
https://research.arcadiascience.com/pub/idea-how-to-validate-proteincartography/
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https://research.arcadiascience.com/pub/open-question-dck-proteincartography/
https://github.com/Arcadia-Science/ProteinCartography/releases/tag/v0.5.0
https://github.com/Arcadia-Science/ProteinCartography/releases/tag/v0.5.0
https://github.com/Arcadia-Science/2023-actin-embedding/blob/main/notebooks/3_plotting_overlays.ipynb
https://zenodo.org/records/11288430


previously [4]. We first narrowed down this list by looking for proteins under 1,280

amino acids, as this is the cutoff that AlphaFold uses (as listed in the FAQ at the time of

writing), and ProteinCartography uses structures from the AlphaFold database [5][6].

Each AlphaFold structure has per-residue confidence scores in the form of pLDDT

scores, which approximate the amount of disorder in a protein’s structure [7]. We

chose to focus only on proteins with a mean pLDDT score over 80, which implies that

the proteins are generally modeled well. Given that the ProteinCartography pipeline

relies on AlphaFold for structural comparison, these cutoffs increased the chances

that our structural predictions would be high-confidence. We next narrowed down the

list by looking for proteins with commercially available assay kits.

We found that the Ras GTPases, namely HRas and KRas, not only fit these criteria [2]

but also result in a ProteinCartography map that revealed clearly defined clusters that

should let us test our hypotheses (Figure 1).

What do RasGTPases do and why are they

important?

Ras GTPases are a well-studied superfamily of small monomeric GTPases that are key

participants in myriad signal transduction pathways, including membrane trafficking,

apoptosis, and cell differentiation [8]. In these processes, they function as binary

molecular switches controlled by the action of GAPs (GTPase-activating proteins),

which facilitate cleavage of the phosphate in GTP molecules, and GEFs (guanine

exchange factors), which allow for rapid dissociation of the bound GDP [9]. The Ras

superfamily includes the Ras, Rab, Ran, Rho, and Arf subfamilies [8]. Our analysis

includes members from each of these subfamilies, but we’re primarily focused on the

Ras subfamily. The name Ras comes from the cancer-causing Rat sarcoma viruses

from which these genes were first sequenced [10]. Three human Ras genes encode

Ras subfamily members: HRas, KRas, and NRas [11]. HRas and KRas are ranked 28th

and 29th (respectively) in a list of the most-studied human proteins, so we’ve chosen

to focus on them here [4].

Mutations in Ras genes are implicated in up to 30% of cancers, as constitutively active

Ras results in uncontrollable cell proliferation [12]. As such, many studies have aimed

to reverse the constitutive activity of oncogenic Ras mutants. Despite a long-term

reputation as “undruggable,” recent focus on allele-specific inhibition of Ras has led to

https://alphafold.ebi.ac.uk/faq


multiple promising cancer therapeutics [13]. In 2021, the FDA approved the first KRas

inhibitor, sotorasib, which binds mutated KRas as a therapy for KRas-related non-small

cell lung cancer [14]. Alternative work has focused on inhibiting Ras–effector

interactions and preventing activation of the signaling cascade [13]. Looking at Ras

proteins across species could give us more information about the function of this

master regulator, and a deeper structural and functional understanding of Ras proteins

might inform further therapeutic avenues.

Diving into the
ProteinCartography results for
the Ras GTPase family

Running ProteinCartography on Ras GTPases

To identify similar proteins to our inputs and explore the structural variation in this

protein family, we ran ProteinCartography analysis in “search mode” using human

HRas and KRas as inputs (UniProt IDs: P01112 and P01116). ProteinCartography fetches

similar proteins based on structure and sequence. It compares every structure to

every other structure and generates TM-scores, or structural similarity scores,

between each pair of structures [15]. It uses these to create interactive UMAP and t-

SNE projections with overlaid Leiden clusters and metadata for exploration [16][17]

[18]. To learn more about how ProteinCartography works, visit our ProteinCartography

pub [1].

For this analysis, we requested 3,000 Foldseek hits, 7,000 BLAST hits, and 10,000 total

structures for both inputs combined. This run generated 5,421 unique structure hits

that the pipeline grouped into 12 clusters (Figure 1 and Figure 2, A). Both HRas and

KRas are in LC00 (Figure 1 and Figure 2, A). Since HRas and KRas are very similar, we

focus on just HRas in our downstream discussion. When we refer to the structural

similarity of clusters to an input protein, we perform those calculations by comparing

them to HRas alone (Figure 2, E).

https://www.uniprot.org/uniprotkb/P01112/entry
https://www.uniprot.org/uniprotkb/P01116/entry
https://doi.org/10.57844/ARCADIA-A5A6-1068
https://doi.org/10.57844/ARCADIA-A5A6-1068


LC00 LC01 LC02 LC03 LC04 LC05 LC06 LC

LC09 LC10 LC11

color Leiden Cluster ▼

Interactive protein space with metadata overlays.

UMAP projection generated with ProteinCartography for human HRas. Our

input protein, human HRas, is in LC00 and indicated by a four-pointed star.

The overlays can be changed via the drop-down “color” menu.

A full list of all the proteins in this analysis, plus all the aggregated information from the

pipeline is available in the aggregated features file linked below:

Figure 1



GTPase_HRas_KRas_aggregated_features_pca_umap.tsv Download

Assessing compactness and overall quality

Our first step was to assess the cluster similarity matrix (Figure 2, B) for inter- and intra-

cluster similarity. This can help us understand how well the clustering approach

separated the proteins. These values are determined by calculating the mean TM-

score of each protein in each cluster compared to every other protein in every cluster.

The TM-score tells us how similar two protein structures are, with a score of 1

indicating the structures are identical [15]. The diagonal of the matrix represents how

similar the structures of a cluster’s constituent proteins are to each other, and the

average of the diagonal is the “cluster compactness” score for the run. For the Ras

GTPases, that value is 0.68. This indicates that most clusters are quite compact — in

fact, all clusters except LC02, LC07, and LC10 have compactness scores over 0.6

(Figure 2, B). Additionally, some clusters show cross-cluster similarity (i.e., they have a

high between-cluster mean TM-score), but many clusters appear distinct.

Next, we did a few quality checks on these outputs (Figure 1 and Figure 2). We first used

the structural confidence, or mean pLDDT, overlay to assess the structure quality and

the level of disorder of our output protein structures. In this case, the majority of the

structures have mean pLDDT scores around 80 (Figure 1). This value gave us

reasonably high confidence in the predicted structures and tells us that they likely

don’t contain large regions of disorder.

We next explored the TM-score overlay, which tells us the similarity of the fold of each

output protein to the fold of the input protein (here, human HRas). This can also serve

as a confidence metric. If our 5,421 hits were all very structurally similar to the input

(only high TM-scores), we might lack enough variation to find functional differences

between clusters. Conversely, if our hits were all extremely dissimilar (only low TM-

scores), it might suggest that we haven’t captured closely related proteins. We found a

range of TM-scores, but overall this protein family had high TM-scores across the

board. In this case, the lowest TM-scores were around 0.5 (found in LC04, the Arfs),

which suggests even these structures adopt the same fold as our input (Figure 1 and

Figure 2, E). LC00 has, on average, quite high TM-scores (around 0.92) — an

tsv

https://assets.pubpub.org/ied8tgol/GTPase_HRas_KRas_aggregated_features_pca_umap-01716483461556.tsv


encouraging sign, as

this cluster contains

the input protein

itself (Figure 1 and

Figure 2, E). Once we

confirmed that the

outputs could yield

informative results,

we moved on to

assessing the

distribution of

taxonomic origins,

lengths, and

annotation scores

across clusters.

Exploring

the data

In the following

subsections, we

walk through the

most interesting

clusters from our

ProteinCartography

analysis. We use the

metadata overlays

and semantic

analysis to learn

more about these

clusters and to find

proteins we can use

to test our two

foundational

hypotheses about

ProteinCartography



ProteinCartography outputs reveal interesting

clusters for proteins with structural similarity to

human HRas.

(A) The structure of human HRas, where orange

indicates regions of higher disorder, alongside the

UMAP projection with Leiden cluster overlay. Black

diamonds indicate the locations of the input proteins

(top, human HRas; bottom, human KRas). Note that

LC04 is cropped out. Below the projection are violin

plots showing the distribution of key values for each of

our clusters of interest where the circle indicates the

median value. White dots mean the median is below

the threshold for significance, while filled-in dots

denote significance in a Mann–Whitney U test. “Broad

taxon” indicates taxonomic groups that are

represented in each cluster. “Annotation” is the UniProt

annotation score, or the relative confidence in each

functional annotation (scale: 1–5). “pLDDT” is the

confidence in the AlphaFold structural prediction for

each structure (scale: 0–100). “Length” is the number

of amino acids in each protein. “TM-score” is the

similarity of each structure to that of human HRas

(scale: 0–1).

(B) Cross-cluster similarity matrix. Each box represents

the average TM-score (structural similarity) when

comparing all structures in one cluster to all structures

in another, where a higher score means the structures

are more similar. The input cluster is marked with an

asterisk (*) and our clusters of interest are marked with

dots (•).

(C) UMAP projection with custom overlay showing

existing annotation. Annotations were manually sorted

(that proteins within

a cluster function

similarly and those in

different clusters

function differently).

SHOW ME THE

DATA: Our full

ProteinCartograp

hy analysis for the

Ras GTPase

family is in this

Zenodo

repository (DOI:

10.5281/zenodo.11

288430).

LC00: How

does our

input protein

cluster?

We began by

exploring LC00,

which contains our

input proteins, to

assess if the outputs

of

ProteinCartography

seem reliable and

match what we’d

expect.

Taxonomically, LC00

mostly comprises

Figure 2

https://zenodo.org/records/11288430
https://zenodo.org/records/11288430
https://zenodo.org/records/11288430
https://doi.org/10.5281/zenodo.11288430
https://doi.org/10.5281/zenodo.11288430


into the known subfamilies of the Ras GTPase

superfamily.

(D) UMAP projection with taxonomic origin overlaid.

(E) UMAP projection with TM-scores (compared to the

input protein) overlaid. TM-scores indicate higher

structural similarity to human HRas.

(A, C–E) Dashed boxes mark our clusters of interest.

metazoa,

vertebrates, and

arthropods (Figure 2,

D). The average TM-

score, or structural

similarity, of proteins

in this cluster

compared to human

HRas is 0.92 (Figure

2, A), which suggests

these proteins have

extremely similar structures. Though the length of human HRas is only 189 amino

acids, the average length for proteins in this cluster is 236 amino acids (Figure 2, A).

This means that at least some proteins in this cluster are longer than the human

protein. We could investigate whether these length differences within a cluster have

meaningful effects on biochemical function. Although LC00 contains both of our well-

annotated input proteins, the average annotation score for this cluster is 1.96 (Figure 2,

A), which is still quite low and indicates plenty of room for discovery even within the

input-protein-containing cluster. If we find that representative proteins from this

cluster indeed share a function, it would support annotating all the proteins in the

cluster as Ras GTPases.

LC03: Fungal homologs close in structure to human

HRas

Our next focus cluster was LC03. While most of the clusters contain some

combination of taxonomic origins, LC03 comprises entirely fungal proteins (Figure 2, A

and Figure 2, D). The average TM-score (structural similarity to the input) for proteins in

this cluster is quite high, at 0.93, implying that most of them adopt a highly similar fold

to human HRas (Figure 2, A and Figure 2, E). The majority of these proteins are

annotated as “Ras-like proteins” or “small monomeric GTPases,” though the average

annotation score for the cluster is low — only 1.4 (Figure 2, A and Figure 3). The average

length of proteins in this cluster is 226 (Figure 2, A). This is closer to the length of

human HRas (189 amino acids) than the average length of the proteins that co-

clustered with both HRas and KRas. The mean pLDDT, or structural confidence, for

proteins in this cluster is 81.4, suggesting that these proteins have some regions of

disorder (Figure 2, A). While this is within what we consider an acceptable range, it’s



lower than our other clusters of interest and it could point to these proteins having

disordered regions and it may result in lower-confidence functional predictions.
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Interactive semantic analysis plot from ProteinCartography analysis of

human HRas, showing the relationship between clustering and protein

annotations.

The colors in the plot correspond to the colors of the Leiden clusters. For each

cluster, the plot contains a ranked bar chart and a word cloud. The chart includes

the top ten full annotation strings, while the word cloud shows the top individual

words that appear in the annotations. Hovering over a bar in the chart displays

the full annotation string and the number of proteins with that annotation.

Figure 3



LC06 and LC09: Taxonomically diverse homologs

with generic annotations

After LC03, we explored LC06. This cluster contains proteins of mixed taxonomic

origins, including fungi, vertebrates, and even a few archaea (Figure 2, A and Figure 2,

D). Despite this apparent diversity, there are no plants or bacteria represented. The

average TM-score for this cluster is 0.88; though lower than that of LC03, this still

indicates that the proteins adopt the same general fold (Figure 2, A and Figure 2, E).

The average length is 208 amino acids, slightly closer to the length of human HRas

(189 amino acids) than either LC00 or LC03 (Figure 2, A). Interestingly, this cluster has

an average annotation score of 2.0 (Figure 2, A), which is higher than we expected. This

is because there are quite a few well-annotated proteins mixed in with many that are

vaguely characterized or even entirely uncharacterized. The top annotation for this

cluster is simply “small monomeric GTPase,” a descriptor shared by all members of the

Ras superfamily (Figure 2, A and Figure 3).

Our final cluster of interest is LC09. The average length of proteins in this cluster is 188

amino acids, similar to the 189 amino acids length of human HRas (Figure 2, A). In

many ways, LC09 is similar to LC06. This cluster, too, comprises proteins from mixed

taxonomic origins, with especially high representation from arthropods and other

ecdysozoans (Figure 2, A and Figure 2, D). There are two fungal proteins and quite a

few proteins from rotarians, but no representation of plants or bacteria. Similar to

LC06, the average TM-score of these proteins is 0.88 and their average annotation

score is 2.1, suggesting the proteins share a fold with the input protein and that many

proteins in this cluster have confident annotations (Figure 2, A). However, the top

annotation for this cluster is the general annotation, “small monomeric GTPase”

(Figure 2, A and Figure 3). Interestingly, the cross-cluster compactness matrix

indicates that proteins in LC03 (all fungal proteins) and LC09 have highly similar folds

to each other (Figure 2, B).

Overlaying annotation data

We produced custom metadata overlays to visualize trends between clusters. As

mentioned, the Ras family is part of the Ras superfamily, alongside the Ras, Rab, Ran,

Rho, and Arf families [8]. Did our clusters separate proteins into these well-known

groups simply based on structural comparisons? We first assessed the semantic



analysis, an output of the ProteinCartography pipeline that provides the top

annotations by cluster along with their counts. We saw that clusters tend to be

composed primarily of a single subfamily (Figure 3). We then went through and

manually categorized each protein into its subfamily (for example, we’d categorize a

protein annotated as “mitochondrial Rho GTPase (EC 3.6.5.-)” as simply “Rho”). The file

with manual annotation groups can be found here. Overlaying these general

annotations on top of our Leiden clusters, we recognized some patterns that support

this clustering strategy. First, each of the subfamilies cluster together quite well (Figure

2, C). For example, the Arf GTPases form a distinct cluster, LC04 (Figure 2, C). This is

expected, as Arfs are generally less related to the other Ras GTPase family members

[8]. Inspecting these more closely reveals that the Ran family clusters with the Rab

family; this is also expected because Rans are generally considered part of the Rab

family [8] (Figure 2, C). We also noticed “uncharacterized proteins” and vague

annotations like “GTP-binding protein” throughout the map.

Summary

We’ll be testing the hypotheses that proteins clustered together function similarly and

proteins in different clusters have different functions. We can do so by comparing

proteins within LC00, which contains our input protein HRas, and by comparing

proteins from various additional clusters to those in LC00. Three candidate clusters

jumped out at us for this analysis due to their high TM-scores and low annotation

scores — LC03, LC06, and LC09. The high TM-scores suggest these clusters have

captured proteins with strong structural similarity to human HRas, while their low

annotation scores indicate that they are under-studied (particularly experimentally). If

we can confirm their function in the lab, these are strong candidates for additional

functional annotation. You’ll have the opportunity to vote on a favorite research

direction or comment with any further ideas below.

https://zenodo.org/records/11288430


What do you think?

Do proteins within clusters function similarly?

Here are our ideas about how we might answer this question.

1. We could characterize uncharacterized proteins from the cluster containing our

input protein to see if they have similar functions (in LC00). To start, we’ll be testing

their GTPase activity compared to human HRas.

2. We could also refine the current annotations of proteins that are annotated too

broadly. Many proteins throughout the analysis are annotated as “GTP-binding

protein” or “small monomeric GTPase.”

Do these seem like reasonable approaches to test this hypothesis?

Do proteins in different clusters have different

functions?

Here are the clusters we’re considering to answer this question. We plan to compare

proteins from these clusters to our input protein, which is in LC00. This cluster

primarily contains metazoa, vertebrates, and arthropods.

1. LC03 contains all fungal proteins with a highly similar fold to human HRas. The top

annotation for this cluster is “Ras-like proteins” or “small monomeric GTPases,”

but these annotations rank poorly in terms of quality and experimental support. By

studying this cluster, we might learn why these proteins cluster separately from the

input protein even though their fold is so similar.

2. LC06 has mixed taxonomic origins, but lacks plants and bacteria. The structures

of proteins in this cluster are also highly similar to human HRas, although slightly

less than those in LC03. Though the annotations in this cluster have slightly higher

confidence than LC03, there are still many proteins that are uncharacterized or



vaguely annotated. Like LC03, we’d be interested in understanding why these

structurally similar proteins cluster separately from the input protein.

3. LC09 has mixed taxonomic origins but includes many arthropods. The structures

of proteins in this cluster are about as similar to human HRas as those in LC06.

Additionally, these proteins are generally shorter than the other two clusters,

similar in length to human HRas. The proteins in this cluster are primarily

annotated as “GTP-binding protein” or something similarly generic. In addition to

learning why these proteins cluster separately from the input cluster, we could look

into why LC03 and LC09 cluster separately from each other even though they

seem to share a fold.

Which of these clusters is your favorite for testing our
hypothesis that proteins in different clusters have different
functions? 

1

LC03A

LC06B

LC09C

OK

How should we approach working with Ras

GTPase proteins in vitro?

Once we select individual clusters and proteins, we’ll purify each protein and test its

GTPase activity using an in vitro assay.



Are there tips/tricks/challenges to biochemical analysis of Ras GTPase?

Do you have ideas for functions or mechanisms of Ras GTPases that we might

want to test other than or in addition to intrinsic GTPase function?

Additional methods
We used ChatGPT to suggest wording ideas and then chose which small phrases or

sentence structure ideas to use.

Next steps
We’re seeking feedback on selecting individual clusters and protein families for further

analysis in vitro. We aim to characterize the biochemical activity of a handful of these

proteins to test our overall hypotheses about how ProteinCartography clusters

proteins. However, there are additional analyses we can tackle in the meantime that

might tell us more about this protein family.

Align functional data in the literature with

ProteinCartography clustering

Because this protein family has been studied extensively, we wondered if we might find

information in the literature about the biochemical function of the proteins in our

analysis. Could we use the available data to help validate ProteinCartography and to

help narrow down which proteins we bring into the lab?

There are several annotated, biochemically characterized Ras superfamily proteins

that fit into the families we found in our analysis. We plan to curate available

experimental data on Ras GTPase homologs and see how well this info aligns with our

clustering.



Learn more about clusters and individual

proteins by studying specific, conserved

structural features

While ProteinCartography compares global protein structures, there’s much we could

learn by comparing specific aspects of the structures in this analysis. For example, we

could look at surface vs. buried residues, electrostatics, topology, hydrophobicity,

secondary structural elements, and more.

We know that the function of these Ras GTPases depends on binding GTP, GAPs,

GEFs, and effectors. Because we know the regions responsible for each of these

functions, we can look for conservation of these structural features across the family.

By doing so, can we predict which GAPs and GEFs a given Ras GTPase interacts with?

Can we predict if proteins from certain organisms are more or less susceptible to

mutations that cause cancer in humans?

Summary

While we prepare for in vitro validation of ProteinCartography with Ras GTPases, we

hope to use additional information from the literature and from the structures

themselves to help us better understand the relationship between clustering and

function.
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