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An experimental and
computational workflow to
characterize nematode
motility behavior

We used straightforward microscopy and computational analyses to

reproducibly characterize a nematode motility phenotype with

interpretable features. This method should be scalable for high-

throughput phenotypic screening.
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Purpose

Behavioral phenotypes can be informative discovery tools, but the generally high

variability of such readouts limits their utility. As part of our microscopy toolkit, we

developed and optimized a protocol to measure a motility-based behavioral

phenotype in Caenorhabditis elegans. Our phenotyping results were reproducible

between replicates and showed consistent differences between strains, which could

enable their use in high-throughput genetic or drug screens.
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Background and goals
Because of the importance of disease models in biomedical research and drug

development, we’re interested in leveraging evolutionary insights to identify better

organismal models of human disease. Toward this goal, we developed an organismal

selection framework [1] that found that PDE6D, along with several other human genes

that cause monogenic retinitis pigmentosa, exhibited exceptional molecular

conservation between C. elegans and humans. Mutations in PDE6D result in

neurodegeneration of photoreceptor cells and progressive blindness [2]. Given this

insight, we were interested in whether C. elegans with mutations in pdl-1, the

conserved PDE6D homolog, could function as a low-complexity, high-throughput

model of neurodegeneration in retinitis pigmentosa.

Phenotypic screening lets us discover novel regulators of traits even when our prior

knowledge of the underlying biology is limited. We're developing microscopy tools to

enable nondestructive phenotypic characterization of a broad range of species. One of

the species-agnostic parameters we're exploring for this toolkit is motility. Motility

integrates critical features of living systems, including bioenergetics, biomechanics,

and response to stimuli. We’ve previously developed and published a method to

characterize motility in a single-celled organism, Chlamydomonas reinhardtii [3], and

are expanding this tool to Caenorhabditis elegans (C. elegans), a metazoan.

We’re sharing our detailed protocol to help researchers employ nematode motility

behavior as a phenotypic readout.

This pub is part of the platform effort, “Microscopy: Visually interrogating the

natural world.” Visit the platform narrative for more background and context.

The Snakemake workflow and notebooks to analyze C. elegans videos for motility

phenotypes are available in this GitHub repository.

Protocols for C. elegans genotyping, culture and maintenance, bleach life-stage

synchronization, and prepping worms for image acquisition are available on

protocols.io.

Raw and processed imaging data can be found at the BioImage Archive.

https://research.arcadiascience.com/microscopy
https://research.arcadiascience.com/microscopy
https://research.arcadiascience.com/microscopy
https://github.com/Arcadia-Science/2024-worm-tracking/tree/v1.0
https://www.protocols.io/view/genotyping-c-elegans-dj5q4q5w
https://www.protocols.io/view/genotyping-c-elegans-dj5q4q5w
https://www.protocols.io/view/c-elegans-culture-and-maintenance-dj254qg6
https://www.protocols.io/view/bleach-life-stage-synchronization-of-c-elegans-dj264qhe
https://www.protocols.io/view/bleach-life-stage-synchronization-of-c-elegans-dj264qhe
https://www.protocols.io/view/preparing-c-elegans-for-image-acquisition-dnys5fwe
https://www.protocols.io/view/c-elegans-maintenance-synchronization-and-preparat-dsc26aye
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1563


As a model/assay pair, C. elegans motility has many advantages. C. elegans is

multicellular, so it captures biological traits that emerge from the coordinated behavior

of several cell types in tissues or organs. However, it's still small enough for high-

throughput experiments [4]. Motility data from this species can be acquired and

analyzed non-destructively using light microscopy at low magnification, a broadly

available tool [5]. Additionally, many computational methods are available to analyze C.

elegans motility that could serve as a basis for an analytical workflow [6][7]. We sought

a workflow to leverage these advantages while controlling for the high natural variability

inherent to behavioral analyses.

The problem
We wanted an end-to-end experimental and computational approach for tracking

worm motility. While many researchers have developed approaches for C. elegans

motility tracking, we wanted an approach that:

1. Would allow us to track varied motility phenotypes from many different C. elegans

strains without a priori knowledge of what phenotype we should expect to see.

2. Would produce interpretable motility features. We favored approaches in which a

feature intuitively describes a phenotype (i.e., worm speed).

3. Would allow us to use our existing microscope. Some motility tracking tools

require a specific imaging setup, but we didn't want to acquire new hardware and

wanted to rely on basic laboratory consumables for worm handling. This has the

additional benefit of making the method accessible to a broader set of

researchers.

4. Didn't require specific dyes/stains/fluoresence to track the worms. We didn’t want

to introduce additional variables into the screen [8][9].

5. Could be adapted to high-throughput screens. While we started with a low-

throughput approach, we wanted to be able to track the motility of multiple worms.

6. Would use software that’s explicitly been built for C. elegans motility tracking (as

opposed to general motility tracking [10]) and has been used in many motility

tracking experiments. This would make any results we produced potentially

comparable to studies that used the same analytical method and provide

confidence that the software had fewer bugs or inaccuracies. We also looked for



open-source tools that were easily installable, ran after installation without

changes to the source code, and had a commercially compatible license.

Our solution
We set out to develop a combined experimental and computational workflow to

characterize diverse strains of C. elegans with unknown motility phenotypes. We began

by selecting the motility-tracking software we wanted to use to analyze our imaging

data. While many tools exist for worm tracking [6][7][8][9][11][12][13][14][15][16][17]

[18], we found that only Tierpsy Tracker met all of the conditions we were interested in

[6][7].

Using our existing hardware, we tailored our data acquisition approach to the Tierpsy

tracker tool. We introduced a life stage synchronization step to make the worms more

uniform and easier for Tierpsy Tracker to detect, and we designed a buffer transfer

approach to minimize background artifacts that made worm detection difficult. For

imaging, we developed a low-throughput assay performed on 6 cm plates using an

upright microscope. We imaged multiple fields of view from each plate and took 30-

second videos of each field, each containing multiple worms. These optimizations

significantly improved our ability to track worm movement with the Tierpsy Tracker tool.

We then built an automated computational workflow to track motility phenotypes of

individual worms from this imaging data. This workflow performs preprocessing and

quality control before running the Tierpsy Tracker tool.

As a positive control for assay development, we selected a worm strain with a

characterized motility phenotype to reproduce with our pipeline. We selected a mutant

with a large-scale deletion in the nematode gene pdl-1 (allele gk157). We then sought to

reproduce this known phenotype — increased speed and reduced dwelling [11] — in our

analysis.

Why is this useful?
This approach can be used to characterize the motility of different C. elegans strains.

Our experimental protocols don’t require specialized tools (except for a widefield

upright microscope), and we have optimized them to generate reproducible results



using our automated analysis pipeline. This pipeline is an end-to-end automated

Snakemake pipeline that ingests movie files, processes them, and detects

interpretable features. This pipeline can be run on a Linux computer through the

command line, and we also provide an analysis approach that can be used to detect

features that are significantly different between imaging conditions (such as

comparing mutant worms to WT). In principle, other groups can adapt this method to

study the behavioral effects of other factors, such as drugs or environmental stimuli.

With further development, it could also form the basis of a high-throughput phenotypic

screening approach in C. elegans, enabling the discovery of novel biological

mechanisms and/or therapeutic candidates.

The method
This method enables a researcher to generate and analyze C. elegans imaging data

and to process these data into a motility phenotype composed of 150 features:

distinct, quantifiable parameters that capture different facets of worm motion. We have

also included our protocols for culturing and genotyping worm strains, should they be

useful. Figure 1 presents a visual summary of the workflow. We optimized these steps

using the pdl-1(gk157) deletion mutant described above. You can find protocols

associated with the experimental workflow in Figure 1, A on protocols.io. They describe

this process under baseline culture conditions using 6 cm Petri dishes, but you can

adapt these parameters as necessary.

https://www.protocols.io/view/c-elegans-maintenance-synchronization-and-preparat-dsc26aye


Experimental and computational workflow overview.

(A) Diagram of experimental setup. We expanded worms under standard

culture conditions (1). We then performed a life-stage synchronization using

alkaline bleach treatment to synchronize worms to the L1 larval stage (2).

After growing these to adulthood (3), we use M9 buffer to transfer the worms

to a fresh plate with growth medium without OP50 bacteria to facilitate

clearer imaging (4). Finally, we image the synchronized adults using our

upright microscope (5).

(B) Image processing. To process images into motility measurements, we

begin by converting images from Nikon format (ND2) to TIFF (1). We then

apply a difference of Gaussians filter to improve worm segmentation (2). We

convert these images to MOV format (3) and use Tierpsy Tracker to estimate

per-worm and per-frame motility measurements for 150 initial features (4).

We also produce two quality-control images. The first shows a projection of

all video frames, allowing the viewer to see the full path of each worm in one

image. The second compares the first frame of the Tierpsy Tracker mask to

the first frame of the MOV so the viewer can see which worms Tierpsy

Tracker successfully detects. Steps with dashed lines create temporary files.

Figure 1



Analysis. To engineer motility features and compare strains, we read in the

initial Tierpsy Tracker motility measurements (1) and filter to worms detected

for at least 10 consecutive seconds (2). We then take an average of the 133

relevant features to create our motility features (3). Last, we test for

differences between strains using a generalized linear model (4).

Step 1: Culture worms and set up experiment

The major challenge in animal behavior assays is the inherent variability of behavioral

parameters, so we sought to limit variability in the experimental set-up (Figure 1, A). The

most significant way we did this was by incorporating a life-stage synchronization step

at the beginning of the experiment, minimizing the confounding effects of age-related

differences in body size, morphology, and motility behavior.

We began by expanding two C. elegans strains that we’d been actively culturing, N2

(wild type) and pdl-1(gk157), so that we had many gravid young adults for

synchronization. Life-stage synchronization in C. elegans involves bleaching gravid

adults so that they die and release their fertilized eggs, which are resistant to bleach.

Younger adults are a better starting point since they have more unlaid eggs.

Additionally, we avoided excessive bleach treatment to ensure that eggs didn’t

become non-viable during the sync.

Once the fertilized eggs we recovered had hatched into L1 larvae, we plated these

worms onto Petri dishes with OP50 and allowed them to grow for 3.5 days until

reaching young adulthood. At this point, we transferred the worms to Petri dishes

without OP50 for imaging.

We found that the most significant determinant of a successful analysis was

maximizing uniformity of the plate background during imaging, which allows for

straightforward computational segmentation of worms from background. To achieve

this, we lifted worms from their culture plate with a small amount of M9 buffer. We

collected the suspended worms into a tube, then stood the tube up in a rack and

allowed the worms to drop to the bottom of the tube under natural gravity (rather than

via centrifugation), which took about 20 minutes. Next, we removed some of the

supernatant to avoid adding a high volume of liquid to the fresh plates.



Background non-uniformity arose primarily from “tracks” left by the worms in their

bacterial lawn as they fed. To compensate for this, we replated worms on plates

without OP50 bacteria just before imaging.

We found that manually transferring worms using platinum wire introduced additional

background artifacts onto the new plate. Lifting worms from their culture plate with M9

buffer and pipetting them to transfer resulted in the most uniform background signal.

Once we’d transferred the worms to the fresh plates, we allowed them to habituate for 1

hour. This was enough time for the buffer to evaporate and for the worms to begin

moving around in their new environment. In some cases, worms tended to cluster

around each other, particularly if there was a bubble in the evaporating buffer. We

resolved this issue by firmly tapping the plate against the lab bench, which stimulated

their dispersal.

TRY IT: Our protocols for genotyping, worm culture and maintenance, bleach life-

stage synchronization, and prepping worms for image acquisition are available

on protocols.io.

Step 2: Acquire imaging data

Once we replated and habituated the worms, we imaged them using our upright

widefield microscope. For each plate, we collected up to 25 fields of view (FOVs) when

sufficient worms were present. For each FOV, we collected 30 seconds of video data

at 24.5 frames per second (fps) using a Kinetix sCMOS camera. We used a Plan Apo D

4× objective with a numerical aperture of 0.20. Each frame in the resulting video file

was 1,976 × 1,976 pixels at a resolution of 1.625 µm per pixel.

Step 3: Processing imaging data

SHOW ME THE DATA: Raw and processed imaging data are available in the

BioImage Archive (DOI: 10.6019/S-BIAD1563).

https://www.protocols.io/view/genotyping-c-elegans-dj5q4q5w
https://www.protocols.io/view/c-elegans-culture-and-maintenance-dj254qg6
https://www.protocols.io/view/bleach-life-stage-synchronization-of-c-elegans-dj264qhe
https://www.protocols.io/view/bleach-life-stage-synchronization-of-c-elegans-dj264qhe
https://www.protocols.io/view/preparing-c-elegans-for-image-acquisition-dnys5fwe
https://www.protocols.io/view/c-elegans-maintenance-synchronization-and-preparat-dsc26aye
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1563
https://doi.org/10.6019/S-BIAD1563


Our video analysis workflow (Figure 1, B) produces motility phenotype estimates for 150

features. We start by converting the videos from Nikon format to TIFF format. We then

apply a “difference of Gaussians filter” from scikit-image (v0.24.0,

skimage.filters.difference_of_gaussians() ) [19] to improve worm segmentation.

This filter helps Tierpsy Tracker detect the worms. After filtering, we convert the video

to MOV file format and run Tierpsy Tracker (v1.5.3a_18aaba9) to produce an initial set of

150 motility features. Each feature is measured for each worm in each frame in which

the worm is detected (“results/*_featuresN.hdf5”). We use this file in downstream

analysis to measure motility differences.

View the configuration file we used to run Tierpsy Tracker on GitHub (DOI:

10.5281/zenodo.14611279).

In addition to running Tierpsy Tracker, we also produce two quality-control aids. First,

we make a projection from the initial TIFF file to see the full path of each worm in each

video in a single image (PNG) file. The projection lets us visually count the number of

worms in a field of view and develop an intuition for how the worms are moving.

Second, we compare the mask generated by Tierpsy Tracker to the input MOV (by

default, the first frame only) to see which worms Tierpsy Tracker is able to detect.

The analysis produced by Tierpsy Tracker and the two quality-control images are the

endpoints for the automated pipeline. We performed subsequent analysis in Jupyter

notebooks.

Step 4: Engineering features and comparing

motility phenotypes

In the steps above, we used Tierpsy Tracker to produce raw motility measurements

from videos of C. elegans. Next, we used this output to generate features that

represent the movement patterns of the worms.

Tierpsy Tracker produces multiple feature read-outs that capture motility information

about worms, all captured in the “results/*_featuresN.hdf5” file. This is a nested file

that contains multiple named data tables. The Tierpsy Tracker paper presents analyses

based on the information in the “features_stats” table [7]. This table includes features

https://github.com/Arcadia-Science/2024-worm-tracking/blob/v1.0/conf/dogfilter-no-op50-chunks.json
https://doi.org/10.5281/zenodo.14611279


derived from all worms in a given field of view. It contains estimates for 4,539 features,

including those in summary sets like TIERPSY_8 and TIERPSY_16. We chose not to use

these features because they're summaries of worms in a field of view, and our fields of

view are subsections of a plate, which aren't biologically meaningful subunits. Had we

used these features, our statistical analysis would also have been based on field-of-

view summaries instead of individual worms. Instead, we used the per-worm and per-

frame information in the “timeseries_data” table. This data table contains motility

measurements for 150 features (not counting “worm_index,” “timestamp,” or

“well_name”). These features include overall motility measurements like “speed” and

“angular_velocity,” as well as body-resolved measurements such as

“relative_to_body_radial_velocity_head_tip.” They also contain time derivatives of each

measured feature (“d_*”), which indicate the amount that the feature changes from the

previous frame (e.g., “d_speed”). Because these features are resolved to a single

worm, we chose to engineer features from these estimates. We termed this set of

features “Tierpsy single-worm features.”

To create features to compare worms of different strains, we first took the absolute

value of columns with directionality (where negative values indicate reverse or leftward

motion, for example). We then took the mean of all measured values for each worm in

each field of view. We required that Tierpsy Tracker capture a worm for at least 245

frames (10 seconds) for the worm to be included in our analysis. We use these features

to compare worms of different strains and to assess the repeatability of our

measurements.

View the notebook we used to engineer motility features and compare across

data acquisition dates and worm strains on GitHub.

Workflow in action: Altered motility
features in pdl-1 mutant worms

https://github.com/Arcadia-Science/2024-worm-tracking/blob/v1.0/notebooks/20241028-pub-analysis.ipynb


recapitulate previously reported
phenotypes
Once we optimized the workflow, we used it to analyze the motility phenotype of pdl-

1(gk157). We chose to test our workflow on this strain because it has a dramatic and

well-characterized motility phenotype that we sought to recapitulate with our

approach.

We collected videos of wild-type (N2) and mutant (pdl-1) worms on two different days.

Each day, we imaged 50 fields of view (25 FOVs per plate on two plates) per strain.

After filtering to worms that we captured for at least 10 consecutive seconds (245

frames), we observed 388 worms on day one (mean 557 frames per worm) and 210

worms on day two (mean 501 frames per worm).

To analyze the data, we first removed parameters that contained only missing values or

weren’t relevant for comparison (for example, orientation relative to the food edge and

coordinate data). This focused our analysis on motility parameters that provide insight

into the behavioral differences between strains.

Despite the inherent noisiness of animal behavior data, we identified 71 features that

exhibited a statistically significant difference (linear mixed effect model, p < 0.05)

between the strains. We represent a subset of these data describing whole-worm

features visually in Figure 2, grouping the features according to the type of

characteristic defined by the feature (motility category).



Summary plot depicting a comparison of whole-body motility

phenotypes for wild-type (N2) and pdl-1(gk157) C. elegans.

We calculated estimates and p-values using a linear mixed effect model

where strain is a fixed effect and date of image acquisition is a random effect.

A vertical dashed line represents the p-value significance cut off at p < 0.05.

“Motility category” refers to groups we created that reflect the category of

measurement for a motility feature. For simplicity, this figure shows motility

features that were calculated from the whole worm, as opposed to specific

body parts such as the neck. Motility features that are significantly different

between strains are labeled. Each point on the main plot represents a

statistical comparison using a linear mixed-effect model. For mean speed,

we show a boxplot overlaid with individual data points for the “mean speed”

for individual worms; these are the underlying data that are used to calculate

the linear mixed effect model.

Comparing our data to previous reports

Once we characterized pdl-1(gk157) with our workflow, we compared our experimental

results to the reported phenotype of this strain.

The study that previously characterized pdl-1(gk157) used a broadly similar

experimental setup to us, with a few critical differences. These authors captured

Figure 2



imaging data over 15 minutes, and their worms were on plates with food during

imaging. This extended imaging time was important for their purposes, since they

analyzed a large set of mutant worms across different genes, and extended imaging

times were required to eliminate bias from a subset of “extreme coiler” mutants [11].

Because pdl-1(gk157) wasn’t such a mutant, this particular requirement didn’t apply to

our experiment. By limiting our imaging to 30 seconds, we generate less overall data,

which is advantageous given the large size of raw image data files.

The previous study’s authors also used WormTracker2 rather than Tierpsy Tracker to

analyze features [11]. WormTracker2 has a license that's not permissive to commercial

organizations, so we couldn't use this approach to analyze our data.

Since we defined features based on the original Tierpsy feature set and the biologically

meaningful subunits in our specific experimental design, not all of our features map

directly onto the WormTracker2 features used in the previous study. Nevertheless, we

identified six phenotypes that did map directly onto features in our dataset

(enumerated in Table 1).



Yemini et

al. feature

Yemini et

al.

measured

phenotype

Tierpsy single-worm

feature

Tierpsy

single-

worm

phenotype

Tierpsy

single-

worm

feature

descriptio

Dwelling

reduced

N2 mean:

11.004

pdl-1 mean:

8.535

Mean shift:

–2.469

q-val:

0.0443

motion_mode_mean

(increased)

N2 mean:

0.106

pdl-1 mean:

0.237

Estimate:

0.13

p-adj:

3.57E–04

–1 for

backward

motion, 0

for no

motion, 1 f

forward

motion,

averaged

across all

frames

Forward

locomotion

increased

N2 mean:

0.353

pdl-1 mean:

0.511

Mean shift:

0.158

q-val:

0.0268

speed_mean (increased)

N2 mean:

8.462

pdl-1 mean:

14.273

Estimate:

5.800

p-adj:

2.84E–17

Worm

speed

Body bend

frequency

variant

N2 mean:

11.098

pdl-1 mean:

11.015

Mean shift:

–0.0837

q-val:

0.0135

curvature_midbody_mean

N2 mean:

0.027

pdl-1 mean:

0.023

Estimate: –

0.00405

p-adj:

5.39E–06

Mean

curvature o

the

midbody

Head bend

angle

variant

N2 mean:

0.337

pdl-1 mean:

–0.664

Mean shift:

–1.001

q-val:

5.40E–04

curvature_std_neck_mean

N2 mean:

0.014

pdl-1 mean:

0.011

Estimate: –

0.00308

p-adj:

1.15E–12

Standard

deviation o

curvature

across the

neck,

calculated

in each

frame and

then

averaged

across all

frames

Nose

movement

variant

N2 mean:

127.864

pdl-1 mean:

162.975

relative_to_neck_angular_

velocity_head_tip_mean

N2 mean:

0.489

pdl-1 mean:

0.653

Mean

angular

velocity of

the head t



Yemini et

al. feature

Yemini et

al.

measured

phenotype

Tierpsy single-worm

feature

Tierpsy

single-

worm

phenotype

Tierpsy

single-

worm

feature

descriptio

Mean shift:

35.112

q-val:

0.0142

Estimate:

0.161

p-adj:

1.20E–16

relative to

the neck

Tail bend

angle

variant

N2 mean:

17.077

pdl-1 mean:

16.168

Mean shift:

-0.909

q-val:

3.05E–03

relative_to_hips_angular_

velocity_tail_tip_mean

N2 mean:

0.283

pdl-1 mean:

0.396

Estimate:

0.113

p-adj:

6.22E–09

Mean

angular

velocity of

the tail tip

relative to

the hips

Some previously reported effects of pdl-1 deletion on C. elegans motility

and our summarized Tierpsy single-worm features that map to these

phenotypes.

“Yemini et al. feature” qualitatively describes the phenotype observed by the

previous study characterizing pdl-1(gk157). “Yemini et al. phenotype” shows the

quantitative result the authors measured for that specific feature. “Tierpsy single-

worm feature” identifies the feature in our dataset that we believe best

corresponds to the phenotype described by Yemini and coauthors. “Tierpsy

single-worm phenotype” shows the quantitative result we measured for the

corresponding Tierpsy single-worm feature. “Tierpsy single-worm feature

description” describes, in plain English, the meaning of the corresponding

Tierpsy single-worm feature.

p-adj = Bonferroni-adjusted p-value. q-val = q-value. Q-values control the false

discovery rate for a set of statistical tests by providing the minimum proportion of

false positives among rejected hypotheses, offering a direct threshold for

significance. In contrast, Bonferroni correction adjusts p-values by dividing the

desired alpha level by the number of tests, controlling the family-wise error rate

and reducing the likelihood of any false positives, often in a more conservative

manner. While they’re different, both have a significance threshold of 0.05. “Mean

Table 1



shift” represents the magnitude of difference between groups based on the

Wilcoxon rank-sum test. In contrast, the “estimate” refers to the change in mean

phenotype between the wild type (N2) and mutant (pdl-1) strains, as determined

by mixed-effects linear models controlling for acquisition date.

Among these six features, our data for pdl-1(gk157) qualitatively recapitulated previous

observations. For example, we observed that speed_mean was significantly increased

(p = 2.84E−17) in pdl-1 mutant worms, as did the Yemini et al. study. We present our

data comparing these six features between N2 and pdl-1 mutant worms in Figure 3.

Taken together, these data demonstrate that our workflow captured an overall motility

phenotype in pdl-1 mutant C. elegans.

View the TSV of statistical results for all Tierpsy single-worm features on

GitHub.

https://github.com/Arcadia-Science/2024-worm-tracking/blob/v1.0/2024-10-29-n2-vs-pdl1-figlabels.tsv


Effect of pdl-1 deletion on key motility features that directly map to

previously reported phenotypes in this strain.

For the Tierpsy single-worm features in Table 1, we calculated estimates and p-

values comparing wild type (N2) and mutant (pdl-1) worms using a linear mixed

effect model where strain is a fixed effect and date of image acquisition is a

random effect. Each box plot shows individual data points for a given feature for

individual worms; these are the underlying data that are used to calculate the

linear mixed effect model. The thicker lines inside the boxes represent the mean

value for the feature determined for each strain. * indicates p ≤ 0.05, *** indicates

p ≤ 0.001, **** indicates p ≤ 0.0001.

Additional methods
We used Arcadia themeR for data visualization [20].

We used ChatGPT to assist with background research on pdl-1 biology, write code, add

comments to code, and suggest wording ideas that we then selectively incorporated.

We also used ChatGPT to help reformat code by providing it with template scripts and

having it adapt them for new goals, such as converting files between different formats.

GitHub Copilot was also used to help write code. Additionally, we used Grammarly

Figure 3



Business to suggest wording ideas, reformat text according to a style guide, and

streamline and edit text that we wrote.

Next steps
We’ve added this workflow to our microscopy toolkit at Arcadia. We’ve also paused

additional development on this method. However, there are several clear next steps to

consider for anyone who’d like to develop and apply this technology further.

To date, we’ve used this workflow to compare two strains of C. elegans side-by-side.

We originally planned to increase the throughput of this assay by adapting it to a

multiwell plate format, which we believe is possible with additional optimization. The

buffer transfer method we developed to plate the worms on media without OP50 will

simplify efforts to increase throughput.

There are also opportunities to incorporate automation into the experimental side of

the workflow to maximize throughput and reproducibility. We briefly explored the

possibility of automating both experimental setup and image acquisition but elected

not to invest heavily in experimental automation for now.

We think this technology's most exciting application is in high-throughput phenotypic

genetic or drug screening. Though we didn't progress this effort into bona fide disease

modeling for retinitis pigmentosa caused by PDE6D mutation, others may be

interested in pursuing this more clinical angle.
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