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Comparing gene
expression across
species based on protein
structure

We investigated protein structure predictions as an alternative to

protein sequence homology for comparing single-cell RNA-seq data

across species.
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Purpose

Gene expression drives the identity, behavior, and function of all cells. By comparing

gene expression across different species, we can identify genetic networks that are

shared or differ across species, allowing us to form hypotheses about the evolutionary

origins of diverse cell types. To do this, we must first group similar genes so we can

make accurate comparisons. This is traditionally done based on sequence homology.

We thought protein structural similarity might provide an alternative, and possibly more

relevant, basis for comparing cell type across species.
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We’ve put this effort on ice! �

#StrategicMisalignment

We decided not to pursue cross-species single-cell RNA-sequencing analyses in

the near term. Since pausing this work, more sophisticated methods have also

been released. We may revisit this topic in the future and are excited to see the

continued advancements in this field.

We explored the performance of gene clusters inferred using either sequence or

structural similarity in mixing data from different species and integrating single-cell

RNA-seq data from mouse, frog, and zebrafish brain samples. Methods that are able

to accurately identify shared genes across species should allow us to identify cell

lineages that have shared ancestry — we would expect, for example, that frog, mouse,

and zebrafish neurons should express some overlapping set of genes. We found that

protein structural clusters preserved data set structure, but these initial attempts did

not merge homologous cell types across species better than methods based on

sequence homology. While this work was in progress, a conceptually similar approach

has apparently succeeded in merging related cell types across species, and we

suggest readers familiarize themselves with the protein language model-based

method called SATURN [1].

We are no longer actively pursuing this project, but the ideas may be of broad interest,

so we are sharing our concept and preliminary results. At the end of the pub, we further

discuss potential challenges and opportunities for anyone who may pursue this idea.

All code, including analysis notebooks and outputs, is available in this GitHub

repository.

Orthogroup and structural cluster files, plus feature count matrices for each

species and data set are available on Zenodo.

Learn more about the Icebox and the different reasons we ice projects.

https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://zenodo.org/record/7838976
https://www.arcadiascience.com/blog/icebox


The motivation
Cells are a fundamental unit of biological organization, so the evolution of cellular

function is central to biological research. The conservation and divergence in cellular

phenotypes can reveal evolutionary origins and core functional features of cell types,

as well as unique innovations displayed in just a subset of species. For example,

understanding the evolutionary origins of different cell types in the nervous system

may allow us to better understand their physiological function and species-specific

differences. What neural genes and pathways are conserved across evolution and

which are specific to just one clade? How many neural cell types are shared across

species? How much can model nervous systems tell us about the human brain? The

answers to these questions may lie in existing gene expression data, but each species

is made up of a unique set of genes, preventing direct comparison. A method that

places cells from different species in a shared space, in the form of a shared multi-

species gene expression matrix, is needed to answer these questions. Such a method

would merge cell types across species and unlock cross-species transcriptomics, but

this remains a major challenge in bioinformatics [2].

Single-cell RNA-seq atlases — large data sets of single-cell transcriptomes spanning

an entire organism — are uniquely suited to study the evolution of cellular function

because they offer gene functional information, which we can compare directly across

species. These data sets allow us to evaluate how well gene abundance is correlated

with annotated cell types. However, comparing gene expression across species

requires a shared, multi-species reference space in which we can directly compare

gene expression. Genes from diverse species must be grouped into sets of similar

genes, which we call shared feature sets. The primary gene sequences are different

between species, along with overall genome architecture, so there is no

straightforward way to merge reference transcriptomes and generate a shared feature

set. Many factors, including the list of species being investigated, arbitrary similarity

cutoffs, and specific algorithm design choices add complexity to the problem, and as

a result, a number of manual and algorithmic methods have been developed and

applied to this problem [3][4][5].

Existing methods have often relied on single-copy orthologs — genes with only a single

gene copy found in each species used for comparison — making it difficult to compare

cell identities when genes have duplicated across different lineages. Moreover,

sequence-based methods can fail to detect remote, but shared, ancestry [6]. Methods



that avoid relying on single-copy genes or are able to group genes based on expected

function, rather than strictly by ancestry, could theoretically improve gene expression

comparison across species.

The idea
We decided to explore using protein structural predictions from the AlphaFold

Database rather than RNA sequences to create shared feature sets spanning multiple

species. We hypothesized that protein structural similarity might outperform gene

sequence orthology at merging cell types across species. If protein structure drives

protein function more than sequence, then protein structure similarity might better

capture functional conservation than sequence similarity across evolutionary

distances where remote homology detection is more prone to failure, especially at the

cell type level. First, previous approaches are often based on one-to-one-orthologs,

while our method creates collapsed groups of related genes based on structural

similarity, which may be a more relevant comparison for merging cell types. Second,

recognizing that protein structure space is less diverse than protein sequence space,

protein structure predictions might better represent protein function than sequence,

an idea supported by the recent success in using protein structure predictions for

gene functional annotation [7][8]. However, as we detail below, our results to date do

not appear to collapse cell types from different species into common clusters better

than using sequence-based approaches.

While this work was in progress, a related approach based on large protein language

models (PLMs) was shown to effectively merge cells from diverse species, and we

encourage readers to read their results. The method, SATURN, encodes protein

sequences with a protein language model, and proteins in embedded space can be

directly compared and clustered [1]. In a similar way, our approach uses AlphaFold-

predicted structures to make cross-species comparisons, although our initial

explorations did not appear to merge cell types effectively. We will discuss how these

approaches compare, possible explanations for the present difference in

performance, and why they may be superior to sequence homology for this task.



Methods
See detailed methods below or skip straight to the results.

BioFile handling

To coordinate analysis of data across species, we developed a Python package,

“biofile_handling,” which allowed us to programmatically organize files from different

species into a common structure. For more details, see the biofile_handling

documentation page. This package manages the download of files from remote

sources and provides an object-oriented way of interacting with diverse collections of

biological data. This package also helped standardize data access across Jupyter

notebooks to aid in exploratory analysis. We developed this bespoke package due to

the specific cloud-based computing strategy we used at the start of this project. In

retrospect, some of the core pipelines for this project might have been better

implemented using a workflow management system such as Snakemake or Nextflow.

For the purposes of reproducing this study, we have left the “biofile_handling” package

in place. You can find thorough details on how to reproduce our analyses in our GitHub

repository (DOI: 10.5281/zenodo.8264057).

All code, including analysis notebooks and outputs, is available in this GitHub

repository.

Data acquisition

We downloaded publicly available single-cell RNA-seq data and cell type annotation

files for each species in this study. For each study, we selected a single sample of adult

brain scRNA-seq from three species (Danio rerio [9], Xenopus laevis [10], and Mus

musculus [11]) for our exploratory analyses.

We selected these studies because of the available data features — genes × cells

matrices, annotated cell type matrices, and predicted protein structures in the

AlphaFold2 database. These data also came from the same technology (Microwell-

https://arcadia-science.github.io/glial-origins/BioFile_README/
https://arcadia-science.github.io/glial-origins/BioFile_README/
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://www.doi.org/10.5281/zenodo.8264057
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1


seq) which allowed us to more directly compare data from different species without

having to worry about platform-specific effects.

To generate peptide files for downstream analysis, we began by identifying the

genome version used for each of the original data sets. We used GRCz10 for the

zebrafish data, GRCm38.p3 for the mouse data, and JGI-XENLA9.2 from Xenbase for

the frog data. For each data set, we downloaded a FASTA file and GFF file of the gene

models for that genome and used Transdecoder (version 5.5.0) to generate cDNA files

for the genes. We also used Transdecoder to translate cDNA into peptide files using

default settings. For each gene model in our data set, we identified a corresponding

UniProtKB ID, if available, using the UniProt ID mapping API.

Organism

and

reference

Study GEO

accession

Genome

version
Genome FASTA

[9]

GSE130487 GRCz10 GCF_000002035.5_GRCz10_genomic.

[10]

GSE195790
JGI-

XENLA9.2
XENLA_9.2_genome.fa.gz

[11]

GSE108097 GRCm38.p3 GCF_000001635.23_GRCm38.p3_gen

Public data sources used in this study.

Generation of shared feature spaces

To compare gene expression across species, we 1) used a common feature space for

reference, and 2) assigned genes from each species to that common feature space.

We began by identifying the genome version used for each of the original data sets.

We used GRCz10 for the zebrafish data, GRCm38.p3 for the mouse data, and JGI-

XENLA9.2 from Xenbase for the frog data.

Zebrafish

(Danio rerio)

Frog

(Xenopus laevis)

Mouse

(Mus musculus)

Table 1

https://github.com/TransDecoder/TransDecoder/wiki/Home
https://www.uniprot.org/help/id_mapping
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130487
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/035/GCF_000002035.5_GRCz10/GCF_000002035.5_GRCz10_genomic.fna.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE195790
https://ftp.xenbase.org/pub/Genomics/JGI/Xenla9.2/XENLA_9.2_genome.fa.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108097
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/635/GCF_000001635.23_GRCm38.p3/GCF_000001635.23_GRCm38.p3_genomic.fna.gz


To identify orthogroups (groups of genes related by ancestry, abbreviated “OG”), we

ran OrthoFinder (version 2.5.4) [12] using default settings on the Transdecoder peptide

files from all three species. We used the orthogroups representing all species

(Orthogroups.tsv), which we then used to map genes to orthogroups. For the joint

analysis where we mixed cells from all three species, we removed orthogroups that

lacked at least one representative gene from all three species.

To identify structural clusters (groups of genes with similar structures, abbreviated

“SC”), we downloaded all AlphaFold-v4 structures annotated with each species’ taxid

(Drer: 7955; Mmus: 10090; Xlae: 8355). We then used FoldSeek [13] to perform all-

versus-all TM-score structural comparison for all proteins from all three species. We

clustered the all-by-all comparison matrix using the GreedySet algorithm (“Cluster

Mode 0”) to generate structural cluster groups as a shared feature space. Of the

clustering options offered by FoldSeek, this method provided the most structural

clusters for our shared feature space.

Mapping single-cell RNA-seq count data to

shared feature spaces

To generate single-cell gene expression matrices in shared feature spaces, gene

counts were transferred from the original gene annotation to the appropriate shared

feature. For genes that mapped to the same shared feature, we summed the gene

expression values per cell. From here, we used the Scanpy [14] single-cell analysis

package to process count matrices for downstream analysis. For both gene

expression and shared feature set data, we used 40 principal components and 50

nearest neighbors as parameters in the sc.pp.nearest_neighbors  function. For

analysis of individual species, cells and genes were filtered as in a standard single-cell

RNA-seq workflow. For details, see the included analysis notebooks.

Joint embedding space generation

To generate a joint embedding in either OG or SC feature space, we tried to select

features that were differentially expressed in multiple species. We began by identifying

the top differentially expressed (“DE”) features for each cluster in the single-species

analyses. For our results in Figure 5, we took the top 200 DE features for each cluster

https://www.zotero.org/google-docs/?GO7iA8
https://github.com/Arcadia-Science/glial-origins/tree/main/notebooks/3_single-species-exploration


in single-species OG or SC space and generated a list of features for each species

individually. We then took the intersection of those feature lists as our “shared DE

features'' list, which we used to filter our data and build a joint embedding space [see

example in this Google Colab notebook]. We used scanpy’s built-in connector

Harmonypy to harmonize the gene expression by species. For Figure 5, Supplemental

Figure 1, we varied the number of top DE features per cluster from 100 to 300 in

increments of 50, following the same approach with identical Scanpy parameters as

used in Figure 5.

Results

SHOW ME THE DATA: Orthogroup and structural cluster files, plus feature count

matrices for each species and data set are available on Zenodo.

Sequence and structural feature sets capture

species-specific transcriptome patterns

To test whether shared feature sets defined by protein structural similarity can merge

multi-species single-cell transcriptomes, we analyzed a multi-species data set

generated by a single research group using a common library prep methodology [9]

[10][11]. We collected publicly available single-cell RNA-seq data from whole post-

embryonic (adult or juvenile) brains of zebrafish (Danio rerio), frog (Xenopus lavis), and

mouse (Mus musculus) samples and developed parallel workflows to process gene

annotations into two kinds of shared feature sets (Figure 1):

OG — Orthology groups: For sequence comparisons, we used OrthoFinder [12]

across the three species [12] to generate shared feature sets (orthology groups

“OG”) (Figure 2, A).

SC — Structural clusters: For structure comparisons, we performed pairwise

alignment of genome-wide predicted protein structures from the AlphaFold2

database [15][16] for all three species using FoldSeek [13], producing an all-by-all

matrix of protein structure similarity scores. Clustering this matrix yielded sets of

https://colab.research.google.com/drive/1EVworofkY_-ClFfTmvHdjpLChFG4-sDP?usp=sharing
https://portals.broadinstitute.org/harmony/
https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png
https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png
https://zenodo.org/record/7838976


structurally similar proteins (structural clusters “SC”), a structural analog to

sequence orthologs.

With comparable shared feature sets in hand, we transferred gene counts from the

original single-cell RNA-seq count matrices to the cross-species shared feature sets

for analysis (see “Methods”). Overall, we have replaced each organism’s specific

reference transcriptome with a new, merged reference based on shared feature sets.

The distance between cells from different species can be determined based on

differential abundance of shared feature sets. We can directly visualize and compare

multiple species in this shared space.



Overall problem and solution strategies.

Comparing genes between species can be difficult, as the

composition of each genome varies. How can we identify

groups of shared genes between species? We explored

two approaches: using OrthoFinder to find groups of genes

with similar sequences that are presumably orthologous

(diverged from the same ancestral gene copy), or using

Foldseek to find groups of genes with similar predicted

protein structures. We evaluated how well these groupings

preserve biological data and used them to directly

compare multiple species.

We first investigated preservation of gene expression features in the orthology group

(OG) and structural cluster (SC) feature spaces compared to the original gene

Figure 1



expression space. Compared to gene expression space, OG and SC feature spaces

faithfully capture key structures in the data sets, maintaining relationships between

cells for a given species (Figure 2, B–J and Figure 3), as judged qualitatively by overall

highly similar patterns of clustering and embedding regardless of the shared feature

set. Using the un-transformed zebrafish data set as an example, we identified genes

using differential expression analysis to determine whether genes appeared to retain

their overall expression profile in the new feature spaces. In the original data, a cluster

of cells annotated as radial glia and expressing the gene slc1a2b is readily apparent

(Figure 2, B–C, pink outline). In an embedding of zebrafish cells based on the OG or SC

feature sets, the same group of cells, with a similar abundance profile, is marked by

representation of orthogroup OG0004873 or structural cluster SC1105 (Figure 2, C, F,

I). Similarly, a cluster of cells annotated as neurons, and marked by the gene aplnra, is

preserved in both OG and SC feature spaces and marked by features specific to the

OG and SC spaces, OG0004819 and SC21546 (Figure 2, D, G, J). We also observed a

linear relationship between expression of slc1a2b and aplrna and abundance of their

respective OG and SC feature sets (Figure 2, F–G, I–J inset panels). These results

suggest that the “expression” of individual genes is preserved in the new feature

spaces.



Retention of gene expression information in orthogroup and structural

cluster embeddings.

(A) Summary of our overall pipeline for generating shared feature spaces. To

generate orthogroup (OG) spaces, we used OrthoFinder. To generate

structural cluster (SC) spaces, we clustered AlphaFold structures of proteins

using FoldSeek.

Figure 2



(B) UMAP plot of zebrafish cells in gene feature space, colored by cell type.

(C) Plot from (B) colored by expression of slc1a2b.

(D) Plot from (B) colored by expression of aplrna.

(E) UMAP plot of zebrafish cells in OG feature space, colored by cell type.

(F) Plot from (E) colored by abundance of OG0004873, which contains

slc1a2b.

(G) Plot from (E) colored by abundance of OG0004819, which contains

aplrna.

(H) UMAP plot of zebrafish cells in SC feature space, colored by cell type.

(I) Plot from (H) colored by abundance of SC1005, which contains slc1a2b.

(J) Plot from (H) colored by abundance of SC21546, which contains aplrna.

Inset plots in (F, G, I, J) show correlation in expression of the original gene

feature (x-axis) versus the abundance of respective OG or SC feature that

contains that gene (y-axis).

–

For information about the contribution of genes from each species to

orthogroups and structural clusters, see Supplemental Figure 2.1 (opens in

new tab).

Seeking further validation that shared feature sets preserve biological information, we

compared cell clusters from our analysis with the published cell type annotations

provided by the original authors. These annotations may not comprehensively

represent all the cell types present in the data set, but we used them to understand

how our embedding spaces could affect interpretation of cell identities. When

analyzing cells using the original gene feature space, we recover cell clusters and

embedding spaces that are highly similar to the published cell type annotations (Figure

3, A–C). Clustering results are also in broad agreement with the original cell type

annotations, meaning that relationships between cells are generally preserved in the



reduced OG and SC spaces (Figure 3, D–I). For example, in the original gene feature

space, clusters 1, 4, and 12 predominantly contain microglia, macrophages, and apoc1-

high microglia, respectively (Figure 3, C). We observed that when we embedded cells

into shared feature spaces, clusters occasionally merged into new clusters. For

example, in OG feature space, the three immune cell types above are grouped

together in Leiden cluster 1; in SC space (Figure 3, F), these three cell types are

grouped in cluster 0 (Figure 3, I). In general, we observed that cell types with known

functional similarities (immune cells, glia, neurons) tended to “collapse” together in

each of the feature spaces, potentially reflecting shared gene expression signatures

between those cell types. Overall, relationships among cells appear to be broadly

conserved in our OG and SG shared feature sets.



Figure 3



Orthogroup and structural cluster embeddings retain cell type

information.

(A) UMAP plot of zebrafish cells in gene feature space, colored by Leiden

cluster.

(B) Plot from (A), colored by cell type.

(C) Confusion matrix comparing the proportion of cells of each annotated

cell type in each Leiden cluster in gene space. Heatmap hue corresponds to

the fraction of cells of each cell type that contributed to each Leiden cluster.

Each row adds up to 1

(D) UMAP plot of zebrafish cells in OG feature space, colored by Leiden

cluster.

(E) Plot from (D), colored by cell type.

(F) Confusion matrix comparing the proportion of cells of each annotated

cell type in each Leiden cluster in OG space.

(G) UMAP plot of zebrafish cells in SC feature space, colored by Leiden

cluster.

(H) Plot from (G), colored by cell type.

(I) Confusion matrix comparing the proportion of cells of each annotated cell

type in each Leiden cluster in SC space.

–

You can browse the heatmaps in this plot interactively by opening these links

(opens a new tab):

(C) Danio rerio Leiden clusters-vs-celltypes confusion matrix

(F) Danio rerio Leiden clusters-vs-orthogroups confusion matrix

(I) Danio rerio Leiden clusters-vs-structural clusters confusion matrix

–

https://assets.pubpub.org/pzdhrzag/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-Genes-61689818445815.html
https://assets.pubpub.org/pzdhrzag/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-Genes-61689818445815.html
https://assets.pubpub.org/vjhqofgl/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-Orthogroups-71689818469156.html
https://assets.pubpub.org/vjhqofgl/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-Orthogroups-71689818469156.html
https://assets.pubpub.org/ua8a4wln/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-StruClusters-51689818505441.html
https://assets.pubpub.org/ua8a4wln/iFig3.0_Drer_Leiden-vs-Celltypes-confusion-StruClusters-51689818505441.html


For versions of these plots that examine the Mus musculus and Xenopus

laevis data, see Supplemental Figure 3.1 and Supplemental Figure 3.2 (links

open in new tabs).

How do cell clusters in OG and SC feature spaces compare to gene space? Are the

collapsed clusters functionally meaningful? We used Sankey plots to highlight how

clusters of cells are maintained or altered based on the shared feature set used

(Figure 4). These plots show the proportion of cells from each original cluster in gene

feature space that were placed into each cluster in the shared feature spaces. For

each original cluster, we assigned a “primary” destination cluster for which the

greatest number of cells in the original cluster arrived in the new feature space,

labeled as a gold Sankey plot band. Other destination colors are labeled using a beige

Sankey plot band.

https://assets.pubpub.org/r8nt4a1h/CellTypeEvo.v2.1_Fig3_ClusteringConfusion_Mmus-31689819449465.png
https://assets.pubpub.org/4987qkhv/CellTypeEvo.v2.1_Fig3_ClusteringConfusion_Xlae-61689819483372.png


Cell clustering effects in orthogroup and

structural cluster embeddings differ by species.

For each row, the left plot shows the comparison of

Leiden clusters in gene space to Leiden clusters in OG

space.

The right plot shows the comparison of Leiden clusters

in gene space to Leiden clusters in SC space.

Figure 4



To the right of each plot, shared feature space clusters

are annotated with one of three icons indicating that it

is a “retained” cluster, a “collapsed” cluster, or a

“novel” cluster – see KEY at the bottom of figure.

(A) Sankey plots for zebrafish cells.

(B) Sankey plots for frog cells.

(C) Sankey plots for mouse cells.

(D) Summary of proportion of retained, collapsed, and

novel clusters for each species in OG space.

(E) Summary of proportion of retained, collapsed, and

novel clusters for each species in SC space.

–

You can browse the Sankey plots in this image

interactively by opening the following links (opens in a

new tab):

(A, left) Danio rerio genes-vs-orthogroups Sankey plot

(A, right) Danio rerio genes-vs-structural clusters

Sankey plot

(B, left) Mus musculus genes-vs-orthogroups Sankey

plot

(B, right) Mus musculus genes-vs-structural clusters

Sankey plot

(C, left) Xenopus laevis genes-vs-orthogroups Sankey

plot

(C, right) Xenopus laevis genes-vs-structural clusters

Sankey plot

https://assets.pubpub.org/6llerj43/iFig4_Drer_Gene-vs-OG-flow-71695257328422.html
https://assets.pubpub.org/6llerj43/iFig4_Drer_Gene-vs-OG-flow-71695257328422.html
https://assets.pubpub.org/54rw4l2x/iFig4_Drer_Gene-vs-SC-flow-71695257358334.html
https://assets.pubpub.org/54rw4l2x/iFig4_Drer_Gene-vs-SC-flow-71695257358334.html
https://assets.pubpub.org/54rw4l2x/iFig4_Drer_Gene-vs-SC-flow-71695257358334.html
https://assets.pubpub.org/d2v3qxy8/iFig4_Mmus_Gene-vs-OG-flow-51695257428169.html
https://assets.pubpub.org/d2v3qxy8/iFig4_Mmus_Gene-vs-OG-flow-51695257428169.html
https://assets.pubpub.org/d2v3qxy8/iFig4_Mmus_Gene-vs-OG-flow-51695257428169.html
https://assets.pubpub.org/rt48e7xi/iFig4_Mmus_Gene-vs-SC-flow-21695257451935.html
https://assets.pubpub.org/rt48e7xi/iFig4_Mmus_Gene-vs-SC-flow-21695257451935.html
https://assets.pubpub.org/rt48e7xi/iFig4_Mmus_Gene-vs-SC-flow-21695257451935.html
https://assets.pubpub.org/brge0dfb/iFig4_Xlae_Gene-vs-OG-flow-31695257503340.html
https://assets.pubpub.org/brge0dfb/iFig4_Xlae_Gene-vs-OG-flow-31695257503340.html
https://assets.pubpub.org/brge0dfb/iFig4_Xlae_Gene-vs-OG-flow-31695257503340.html
https://assets.pubpub.org/lg91wlpt/iFig4_Xlae_Gene-vs-SC-flow-61695257525897.html
https://assets.pubpub.org/lg91wlpt/iFig4_Xlae_Gene-vs-SC-flow-61695257525897.html
https://assets.pubpub.org/lg91wlpt/iFig4_Xlae_Gene-vs-SC-flow-61695257525897.html


We categorized each cluster based on whether it was 1) a “retained” cluster with cells

primarily from a single cluster in gene space; 2) a “collapsed” cluster with major

contribution of cells from multiple clusters in gene space; or 3) a “novel” cluster with

minor contributions of cells from multiple clusters in gene space (Figure 4). Notably,

while we observed many collapsed clusters in both OG and SC spaces in all three

species, we observed an enrichment of novel clusters containing mixtures of cells

from multiple cell types in the SC space. (Figure 4, D–E). The relative proportion of

collapsed versus novel clusters varied between species. For example, zebrafish cells

in OG feature space produced five collapsed clusters and zero novel clusters, whereas

the same cells in SC feature space produced nine collapsed clusters and eight novel

clusters. Gene, OG and SC feature spaces are not equivalent, and collapsing based on

feature similarity is a potentially valuable way to embed and understand cellular

information.

Overall, we observed that embedding cells into different shared feature spaces

resulted in broadly concordant patterns of clustering and preservation of feature

abundance. By converting genes to either orthogroups or structural clusters, we

introduced some degree of distortion to our data in a signal-dependent manner. The

degree and nature of this distortion varied in the orthogroup and structural cluster

feature spaces, and we have not systematically explored OG and SC clustering

parameters to understand these spaces well. Shared feature abundance can often be

rationalized in terms of gene expression, and each species appears to embed well into

its species-specific OG or SC feature space. We next turned to embedding multiple

species simultaneously.

Embedding multiple species only marginally

merges cell types

After confirming that orthogroups (OG) and structural clusters (SC) largely preserve

structure in scRNA-seq data, we investigated how these shared feature sets might

facilitate cross-species analysis of cell identity and feature set abundance. We

implemented a pipeline to generate a feature set capable of mixing cells from different

species using OG or SC feature spaces into a joint embedding (Figure 5, A). To create

a list of features used in the joint embedding, we began by identifying the top 200

most differentially expressed (DE, see “Methods”) features in the single-species OG or

SC analyses. We took the lists of top DE features from each species and used the



intersection of features between all three species — the most differentially abundant

and mutually shared features — and used this list as the starting point for our analyses.

We thought that selecting only features which are differentially expressed in all

species would reduce differences between species and produce a more merged

embedding space. After filtering out low-abundance features and identifying highly

variable genes through Scanpy (see “Methods”), we used the Harmony Python

package to “batch-correct” features by species. This resulted in a joint embedding

space where we could jointly examine cells from multiple species.



A pipeline using the intersection of within-species differentially

expressed genes and the Harmony algorithm allows for joint

embedding of cells across species.

Drer: Danio rerio, Mmus: Mus musculus, Xlae: Xenopus laevis

Figure 5



(A) Summary of pipeline for generating joint cell embeddings across

species.

(B) UMAP plots of cells from all three species in OG feature space, colored

by Leiden cluster, species, and cell type respectively.

(C) UMAP plots of cells from all three species in SC feature space, colored

as in (B).

(D) Summary of species composition for Leiden clusters in OG space. Ring

plots on the right show the proportion of cells from each species per Leiden

cluster. Bar plot on the left shows the number of clusters with 1, 2, or 3

species’ cells present.

(E) Summary of species composition for Leiden clusters in SC space, as in

(D).

–

For a breakdown of how the number of “top genes” used for generating the

joint embedding affects the mixing of cells, see Supplemental Figure 5.1

(opens in new tab).

You can browse the scatter plots from Figure 5 interactively using the widgets below:

https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png


UMAP 1

U
M

A
P

 2

Joint embedding of cells from mouse, frog, and zebrafish brains in

orthogroup space.

Drer: Danio rerio, Mmus: Mus musculus, Xlae: Xenopus laevis

Figure 6



Each cell in this space is represented as a point. You can hover over the

points to see the cell barcode, cell type, and Leiden cluster associated

with each cell. You can also toggle the data overlay that colors the plot

using the drop-down menu to switch between views that color cells by

Leiden cluster, species, and cell type. Clicking and selecting an area

allows you to zoom in on a group of cells. Double-clicking returns the

zoom to the original size. Clicking on an entry in the legend below the

drop-down menu toggles the visibility of each group of cells. Double-

clicking on an entry hides all categories other than the selected group.
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Joint embedding of cells from mouse, frog, and zebrafish brains in

structural cluster space.

Figure 7



This plot shows the same cells from the previous interactive plot based on

their position in the structural cluster embedding. Notably, cells from the

three species are not as well-mixed as in the orthogroup space.

We compared and analyzed the resulting OG and SC joint embedding spaces to

understand their relative performance (Figure 5, B–C). In OG space, cells from three

species appeared to be moderately mixed, with analogous cell types from different

species appearing to mix in the same clusters (Figure 5, B). SC space showed some,

but noticeably less, mixing across species. For example, radial glial and astrocyte cell

identities from all three species appeared to be mixed in OG cluster 9. Among the 19

clusters in the OG space, 15/19 (79%) contained cells from all three species in the

analysis (Figure 5, D), compared to only 5/21 (24%) in the SC space (Figure 5, E).

The apparent difference in performance between OG and SC space in creating

“mixed” clusters could be caused by a variety of factors, including the representation

of different species in each shared feature group, the size distribution of feature

groups, and many other parameters. To understand the impact of the starting shared

DE feature count on each embedding space, we sampled the top 100, 150, 200, 250,

or 300 genes from each cluster from each species in either OG or SC space, and used

these lists as starting points for new embedding spaces (Figure 5, Supplemental

Figure 1). We observed that varying the number of top DE features we used had a linear

relationship with the resulting number of starting DE features for the shared feature

space. The number of shared DE features in both OG and SC space remained

comparable (Figure 5, Supplemental Figure 1, A, C). Notably, OG spaces appeared to

generally have more clusters containing cells from all three species, whereas SC

spaces appeared to have more clusters containing cells from just one species across

all our analyses. This suggests that the differences in OG and SC performance are

robust to variations in the starting number of shared DE features used to build the joint

embedding.

To further examine the harmonization of cells across species in the joint embedding

spaces, we examined the degree of concordance in cell type annotations across the

three species (Figure 6). We observed that in the OG joint embedding space, a few

clusters displayed similar representation across all three species. For example, OG

cluster 0 contained immune cells (macrophages and microglia) from all three species;

OG cluster 7 contained neurons from all three species; and OG cluster 9 contained

radial glia and astrocytes from all three species. These results suggest that our OG

https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png
https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png
https://assets.pubpub.org/4497hutm/CellTypeEvo.v2_Fig5_JointClust_Supp1-11695256147733.png


joint embedding pipeline appears to be able to mix cells of different species to some

degree. We saw comparable clusters in SC space for the three broad cell types found

in OG space: SC cluster 1 contained immune cells, SC cluster 7 contained neurons,

and SC cluster 9 contained radial glia and astrocytes. These results suggest that while

OG and SC spaces seem to differ in their ability to mix cells across many identities,

there may be “core” groups of features that are readily comparable between the two

approaches.



Multiple cell identities are shared between species using both

sequence identity and structural similarity approaches.

(A) Confusion matrix comparing the proportion of cells of each annotated

cell type from all three species in each Leiden cluster in OG space. Heatmap

hue corresponds to the fraction of cells of each cell type that contributed to

each Leiden cluster. Each row adds up to one. Dotted lines highlight three

clusters of interest that appear to be composed of Immune, Neuronal, and

Radial glial/ astrocyte identities. Solid boxes highlight cells that appear to

contribute to the identity of the cluster.

Figure 8



(B) Confusion matrix comparing the proportion of cells of each annotated

cell type from all three species in each Leiden cluster in SC space, as in (A).

Dotted lines highlight three clusters of interest that appear to be composed

of immune, neuronal, and radial glial/astrocyte identities. Solid boxes

highlight cells that appear to contribute to the identity of the cluster.

–

You can browse the heatmaps in this plot interactively through the following

links (opens a new tab):

(A) Confusion matrix of cell annotations from mouse, zebrafish, and frog

versus Leiden clusters in orthogroup space.

(B) Confusion matrix of cell annotations from mouse, zebrafish, and frog

versus Leiden clusters in structural cluster space.

Discussion
We have developed an approach to merge cell types across species using protein

structural similarity as a basis for comparing gene expression. By mapping genes to

groups of similar protein structures, we cast transcriptomes into a common reference

space, even when starting with multiple species. Our initial investigations presented

here only partially merge cells from multiple species from a Microwell-seq data set.

There are many potential reasons for the overall lack of merging, and we discuss some

of these in the “Challenges” section below.

Shared feature set performance

Shared feature sets have two purposes in the context of this study. First, they are

interesting objects in which to compare genes across and within species. Depending

on the method of compression, we may be able to infer evolutionary relationships like

orthology, convergence, and functional duplication. Second, shared feature sets are

useful for mapping cell types across species from single-cell gene expression data.

We have shown that mapping reference transcriptomes to groups of orthologous (OG)

https://assets.pubpub.org/ab2r9hxn/iFig6_DrerMmusXlae_clusters_vs_celltypes-orthofinder-01695256716709.html
https://assets.pubpub.org/ab2r9hxn/iFig6_DrerMmusXlae_clusters_vs_celltypes-orthofinder-01695256716709.html
https://assets.pubpub.org/rdtbktkj/iFig6_DrerMmusXlae_clusters_vs_celltypes-foldseek-21695256663569.html
https://assets.pubpub.org/rdtbktkj/iFig6_DrerMmusXlae_clusters_vs_celltypes-foldseek-21695256663569.html


or similar (SC) genes preserves single-cell transcriptional information, and it is very

natural to produce OG and SC shared feature sets that span multiple species. In the

case of SATURN, protein embeddings from a protein language model are clustered

into yet another type of shared feature space, with apparently very good results in

merging cells across species.

But there are limits to the utility of shared feature spaces. They can distort gene

expression in complex ways, and they do not represent true functional equivalence

across or within species. It is important to note that shared feature sets (or

“macrogenes” in the parlance of SATURN) do not reduce the burden of exploring

single-cell expression data at the gene level, and including multiple species only

increases the complexity of these data sets. However, shared feature sets are useful

for identifying homologous cell types, and they conveniently group genes in a

meaningful way that is useful for downstream gene-level analysis.

Our efforts thus far yield some degree of mixing between cells of different species in

joint embedding spaces. While it is possible to combine cells from many species into

one data set, clustering and embedding algorithms easily identify species-specific

differences. Our attempts to use regression or a variety of single-cell integration

methods generally fail to merge cell types across species. Feature set selection and

batch correction to force merging between species may produce misleading results.

While it is important to merge homologous cell types, we believe it will be more useful

for the community to explore methods that compare cell types with minimal distortion

to the underlying gene expression data. Once homologous cell types have been

identified, we need downstream tools that are able to make cross-species

comparisons on data that has not been batch corrected. After all, these cells are from

different species and the differences that are regressed out for the purposes of

merging could be biologically meaningful. Rather, we need to understand the

components of gene expression that drive differences across species — adaptation,

drift, technical effects, functional compensation, etc. — to reconstruct the history and

meaning of cell function evolution.

Further work is required to determine if the OG and SC feature spaces are in fact very

good spaces in which to compare multiple species. Unfortunately, we lacked a working

example of merging across species during the development of this work, so it was

difficult for us to debug our approach. If we were to resume this project, we would start

by attempting to reproduce the results of the SATURN paper, followed by evaluating



the differences between shared feature sets based on sequence orthogroups, protein

language models, and protein structural models in a more controlled setting.

It is also possible that, even with further development, we may discover fundamental

differences in the nature of structure- and sequence-based comparisons. One

interpretation of our results could be that the absence of cell type merging using

structures is caused by fundamental biological differences. Given that sequence–

structure relationships are known to be nonlinear, structures might actually be more

dissimilar than expected based on sequence (e.g., [17][18]). Therefore, failure to merge

cell types using structures could be indicative of true functional differences in cell

behavior or physiology. Across evolutionary time, the relationship between cell identity

and structure might differ. Such possibilities are ripe for future exploration.

Merging cell types across species

When comparing cells across species in a shared reference space, a perfect merge or

overlap of cell types across species is not necessarily desirable. Biological differences

between species should be preserved, and it may be expected that homologous cell

types will not merge together in a shared embedding space. Furthermore, efforts to

force data into constrained topologies can introduce artifacts and mask real biology.

Finally, methods that claim to integrate or harmonize data from multiple experiments

cannot distinguish between biological and technical effects, and they must be

employed with caution in the course of single-cell analysis. Rather than methods that

can mash cells into recognizable clusters, we need high-quality data sets that can be

compared with minimal batch correction or distortion, along with workflows that

recognize when to employ batch-corrected versus uncorrected count data.

Comparison to SATURN

The SATURN package introduces a concept of “macrogenes” that are exactly

analogous to the shared feature sets discussed here. Rather than grouping genes

according to their corresponding protein structural similarities, SATURN instead

creates macrogenes based on protein embedding similarity. Protein embeddings are

the output of protein language models. They are a vector representation of the protein

sequence, and crucially these vectors can be directly compared in protein embedding



space. We in fact wanted to try this approach in the course of our work, but we focused

on protein structures as they are widely available via the AlphaFold database. In

addition to using protein language models, SATURN employs sophisticated methods

to weight the contribution of each gene to the set of macrogenes, and they employ an

autoencoder to generate latent cell embeddings while we used more standard

dimensionality reduction and batch-correction methods. We have not yet deeply

examined the performance of SATURN or been able to compare the performance of

protein embeddings versus protein structural predictions in this setting. We are very

encouraged by the results from SATURN, and we look forward to exploring its

capabilities and putting it to use.

Challenges

We faced a number of challenges in the course of working on this project, many of

which were technical rather than scientific.

�. Data acquisition and sanitization. For the analysis we’ve shared in this pub, we

used data generated primarily by a single laboratory (the Guo lab at Zhejiang

University) on a common sequencing platform (Microwell-seq). However, during

the course of this work, we also downloaded and explored data from many

different sequencing platforms (Drop-seq, 10x Chromium, inDrop), organisms

(mouse, human, bearded dragon, turtle, frog, axolotl, salamander, zebrafish), and

research groups. We observed that sequencing data from different research

groups had considerable variability in the availability of code, accessibility of data,

quality of documentation, and formatting of files. These differences make it

challenging to reproduce or even understand previously published work.

�. Data quality. Among the data sets we examined, there was also substantial

variability in data quality. Some data sets contained large numbers of low-read

count cells, or large numbers of small samples that required batch correction.

Without analyzing the data, it was not usually straightforward to know whether it

would be useful. The difficulty in accessing data from different sources was an

additional barrier to analysis.

�. Computational infrastructure. Single-cell sequencing produces very large files

(tens to hundreds of GB) that require large amounts of RAM to load and analyze.

We ultimately used the Cloud9 platform from Amazon Web Services to generate



remote computing environments capable of analyzing these data, but analyzing

moderately-sized scRNA-seq data (~10,000 cells) requires moderately powerful

computing (> 16 GB RAM), which can be a barrier to exploring this type of data.

Overall, these challenges brought to light a contradiction in the current state of single-

cell sequencing studies. Many papers argue that the utility of their work comes from

generating data resources for the broader scientific community. Yet these same

studies often provide few practical ways to access and analyze their data. Others have

highlighted this contradiction through a variety of meta-analyses [19][20].

From our experiences working with these data, we believe that single-cell RNA

sequencing studies could benefit from the following changes to make the data more

usable:

�. Standardization of data formats. Read count matrices for scRNA-seq data are

archived in formats including plain text TXT, CSV, or TSV files; platform-specific

CellRanger, or Drop-seq formats; compressed formats such as LOOM or H5AD;

and numerous other schema. To facilitate ease of data access, we would

recommend scientists share read count matrices as CSV files or H5AD files, as

these formats are more broadly accessible to those intending to utilize the data.

Often forgotten, gene names must be included with the genes × cells matrix, as a

separate file or as the index of a data matrix.

�. Improved software and code documentation. Software and code used for

single-cell sequencing analysis vary in their level of documentation. This variability

can be a consequence of the degree of familiarity of individual researchers with

programming, the amount of time that documentation requires, and limited

oversight of code quality and documentation. We would recommend that authors

use GitHub to centralize code for their analyses and Conda, Docker, or executable

notebooks (Binder, Google Colab) to manage computing environments. Free and

publicly available resources through The Carpentries and other organizations can

help researchers less experienced with programming to make their code and

software more accessible. For all projects, downstream users should be able to

reproduce and extend the initial analysis, requiring planning for new users, posting

to public repositories, and providing documentation, code, and working examples

or tutorials.

�. Greater oversight. If cell atlases and other scRNA-seq studies are to live up to

their oft-promised impact, it is imperative that researchers and publishing

https://datacarpentry.org/


organizations hold each other accountable for producing work that is useful to a

broad variety of scientists. Some publishers have adopted frameworks for data

sharing such as the eLife MDAR Framework. Data and metadata standards

catalogs such as FAIRsharing could help produce better guidelines for data

access and reproducibility for scRNA-seq data.

We’ve tried to provide relatively comprehensive data, code, and software

documentation following the goals laid out by Arcadia’s Software team:

�. Data. You can access the orthogroup and structural cluster files, as well as the

feature count matrices for each species and data set, in this Zenodo record.

�. Code. The code used for generating all of our analyses and components of

figures is available in this GitHub repository.

�. Software documentation. In our GitHub repository, we explain how we

conducted our analysis through a collection of Jupyter notebooks. The software

packages we used for our analysis are collected in this Conda environment.

�. Data exploration. We have built a number of interactive HTML visualizations for

our data using Plotly embedded in the text of this pub, as well as a Google Colab

notebook that users can use to download and explore the joint embedding spaces

generated by this analysis.

Next steps

We decided to “ice,” or pause, this project in the course of our changing research

priorities. Our code and documentation serve as a snapshot of this project and contain

areas that are incomplete or suboptimal, such as the “biofile_handling” framework.

However, we can always pick up our work in the future as the need arises.

We plan to apply the techniques and insights we gained from this exploration to more

near-term efforts within Arcadia. For example, we’re interested in continuing to use

comparisons between protein sequence and structure embeddings to understand the

function of diverse genes [21]. The challenges we faced in using publicly available

code and data have also strengthened our commitment to making our software usable

and reproducible.

https://elifesciences.org/inside-elife/2e04157e/elife-latest-the-mdar-framework-a-new-tool-for-life-sciences-reporting
https://fairsharing.org/
https://research.arcadiascience.com/software
https://zenodo.org/record/7838976
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://github.com/Arcadia-Science/glial-origins/tree/main/notebooks
https://github.com/Arcadia-Science/glial-origins/blob/main/env/glial_origins_tidy.yml
https://colab.research.google.com/drive/1EVworofkY_-ClFfTmvHdjpLChFG4-sDP?usp=sharing
https://colab.research.google.com/drive/1EVworofkY_-ClFfTmvHdjpLChFG4-sDP?usp=sharing


We’re sharing these preliminary results as part of our commitment to open science

and to maximizing the utility of our work. While we would need continued work to fully

evaluate and understand these methods, we hope the analyses and code we’ve

shared can be a starting point for others interested in exploring this space.

Opportunities for follow-up

If you are interested in building on this foundation, we suggest more quantitatively

comparing this approach to standards in the field such as SAMap or SATURN,

exploring the parameter space of clustering algorithms, and testing these methods on

diverse data sets.

Weigh in!
We’d love to hear from you, especially about the following: Have you used structural

homology as an alternative to sequence homology in your research? Do existing cell

atlases contain sufficient depth of coverage in cell types and transcriptomes to make

evolutionary comparisons? How can our community improve its data collection and

sharing practices to make meta-analyses like this more tractable?

If you have thoughts to share, please don’t hesitate to leave a comment!
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