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Phylogenies and
biological foundation
models

Biological foundation models are, at their core, evolutionary

comparisons on massive scales. As with all comparative studies,

evolutionary nonindependence determines their power. We chart

how this affects biological AI and propose practical routes to set the

field on firmer ground.
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Purpose
We’re entering an era of biological foundation models (BFMs) — general-purpose

biological prediction systems. BFMs generalize by inferring evolutionary patterns

through massive comparisons of diverse data. However, using this strategy, they

inherit a challenge long recognized by evolutionary biologists: biological data are

inherently nonindependent due to the evolutionary process. Evolutionary

nonindependence can make models overfit, biased, and capable of incorrect

conclusions if unaccounted for.
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Background
Forty years ago, Joe Felsenstein published “Phylogenies and the Comparative

Method” [1]. In it, Felsenstein points out that all comparative biological studies

possess a standard limitation: the dependencies of evolutionary history limit statistical

power. Many studies are underpowered, and some risk arriving at completely wrong

conclusions. Evolution determines what's learned and the conclusions drawn. It

eventually became an enormously influential paper.

Up to then, studies that compared traits from multiple species — say, for example, the

relationship between tooth area and body size in mammals [2], dioecy traits in

angiosperm plants [3], or chromosome number and insect eusocial behavior [4] —

handled these traits as independent observations. What does this mean? In essence,

biological characteristics are treated like coin tosses. With coins, outcomes aren’t

influenced by previous throws; the probability of heads or tails will always be 50:50, no

matter what came before. However, as Felsenstein shows, in biology, outcomes are

extremely nonindependent. Evolution occurs via descent with modification. Organisms

diversify from common ancestors at varying rates of change. The result is a vast

hierarchy of structured relationships that can be modelled as phylogenetic trees. The

various features we observe in an organism now are determined by what came before.

Unlike coins, a species' traits are influenced by its history. Not all trait features or

combinations are possible across evolutionary space; they depend on the evolutionary

Here, we show how nonindependence might affect BFMs and look for signs of its

presence. We document patterns of data leakage, pseudoreplication, and model

biases. Exploring possible solutions, we consider data rebalancing and using

perplexity to characterize phylogenetic structure in model inputs, training regimes, and

outputs. We conclude that, to realize the full potential of BFMs, machine learning and

evolutionary biology must open a deep and ongoing dialogue.

All associated code, including utility and analysis scripts, is available in this GitHub

repository.

All data, including example protein families, are available on Zenodo.

https://github.com/Arcadia-Science/2025-phylogenies-and-bfms
https://github.com/Arcadia-Science/2025-phylogenies-and-bfms
https://zenodo.org/records/15644457


history of where you're looking. This is why algae don’t have cerebral cortices, humans

can’t photosynthesize, and finches don’t produce milk.

Controlling for nonindependence can radically decrease statistical power. Say you've

collected measurements from 200 species. Assuming independence, your dataset

has an effective sample size of 200. However, let’s say that just two species gave rise

to this group, each leading to 100 identical daughter species. In this case, the sample

size is two (corresponding to the ancestral states). Depending on whether you assume

independence or nonindependence, the apparent statistical power of the dataset will

differ by two orders of magnitude [1]. Assuming independence here could lead to

various statistical problems: overfitting, inference biases, and, in worst-case scenarios,

completely incorrect conclusions. Felsenstein demonstrates that accounting for

phylogenetic relationships is the only way out. He proposes a method — phylogenetic

independent contrasts — that uses phylogenetic information to compare trait values

only at ancestral nodes, thereby controlling for relationships between individual

samples. Many phylogenetic comparative methods have since been built on the

foundation of this method.

In a section titled “What if We Do Not Take the Phylogeny into Consideration?”,

Felsenstein makes a remarkable admission toward the end of the paper. Certain

reviewers thought the paper’s message was too nihilistic. They wanted a simple

method that could rescue comparative studies without a phylogeny. Given the difficulty

of genetic sequencing in 1985, detailed phylogenies were a rare commodity.

Felsenstein doesn’t relent. In the paper’s last sentence, he admits there are

“considerable barriers to making practical use” of his method [1]. However, not doing

so will always lead to statistical error and bias.

Things are very different today. Phylogenies abound due to modern sequencing and

the development of comparative phylogenetic methods. Nonindependence is central

to evolutionary biology. Trait comparisons are everyday occurrences and can be used

to identify causal features of biology. Some argue that molecular and phenotypic

histories can be so well-modelled that we may ultimately be able to predict evolution

[5]. “Phylogenies and the Comparative Method” identified a ubiquitous research flaw

without an immediate path forward. Decades later, advances coalesced to make its

insights actionable. We're now in a similar situation in 2025, and a similar unresolved

argument may be needed (albeit in a context alien to Felsenstein in 1985).



We're in an era of biological foundation models (referred to as BFMs going forward).

BFMs are general-purpose models trained on vast, evolutionarily diverse datasets. If

they live up to what’s promised, what’s on the table is head-spinning. Revolutionary

medicines on demand. Elimination of cancer. Uncovering the deep principles of life

[6]. By and large, the power of these generative models comes from training on

massive, evolutionarily diverse sequence datasets. They're exploring increasingly

massive parameter spaces rivaling large language models (LLMs) in training, cost, and

complexity [7][8][9].

Despite their complexity, BFMs are, at their core, beefed-up versions of the

comparative studies Felsenstein cited in 1985. The difference is, instead of correlating

two phenotypes across a dozen species, these models make billions (or trillions) of

comparisons over the known biological universe. For example, the recently published

Evo 2 model was trained on a “representative snapshot of genomes spanning all

observed evolution” (~40,000 genomes; 9.3 trillion DNA base pairs). The model has 40

billion parameters and a 1-million-token context window [8]. By learning on such a

massive scale, it's believed that the model will uncover an emergent set of rules

governing molecular evolution (sometimes referred to as a “language” or “grammar”).

However, what if Felsenstein's cautious points from 1985 still hold for these gargantuan

comparative studies? It’s often argued that generative models learn about evolution

through co-evolutionary and/or phylogenetic relationships [10][11]. Is this enough to

control for nonindependence? What if not? Where does that leave us, and how do we

move forward? These are the questions of this pub.

An illustrative problem
A simple, illustrative example may help us connect Felsenstein’s problem with

biological machine learning. Cytochrome c oxidase subunit 1 (COX1) is a mitochondrial

enzyme that's become a popular DNA “barcode” for species identification [12]. Most

species on Earth possess a version of COX1, and its evolutionary history is

multifaceted. For example, COX1 sequences have diversified extravagantly among

animals [13] (Figure 1, A). Animal COX1 has changed so consistently that many

species-specific versions exist; COX1 sequences of some sibling species differ at over

50% of sites [14]. Given this information richness, the use of COX1 as a barcode is

especially useful among animal species. Here, the number of effective sequences may

be close to the number of species.



COX1 phylogenetic diversity.

Animal (A) and plant (B) COX1 phylogenetic trees. Tree from Zafeiropoulos et al.

2021 [15].

Great for animals. The story is quite different elsewhere. Among most plants and fungi,

COX1 evolution has been slow [16][17] (Figure 1, B). It has been so slow that, in some

lineages, distantly related species possess nearly identical sequences. Here, COX1 as

a species identity barcode doesn’t work: a single sequence might connect to multiple

(or many) species. There’s no hope of identifying the correct one. Among these

lineages, COX1 exhibits extreme nonindependence. As with the example in the

introduction, these extant COX1 sequences will reflect ancestral versions. Though

descended species may number in the thousands, given the slow rate of evolution, the

number of effective sequences is far lower than this figure.

Imagine you’re interested in creating a machine learning model that generates novel

COX1 sequences. And say you collect primarily just plant sequences. There are many

possible reasons for this. It could be because of history: the field has focused more on

studying this gene in plants. It could be technical: it's easier to extract DNA or fully

sequence the plant versions of the gene. It could be accessibility issues: maybe simply

choose a plant-dominated database (maybe without intending to).

Figure 1



Whatever the reason, the number of effective sequences will be minimal, even with

thousands of entries. What would the outcome be? The model might accurately

predict plant sequences, gleaning what it can from the few effective sequences.

However, performance on non-plants would be abysmal. Moreover, if specific lineages

overcontributed training sequences (maybe because of the same technical, historical,

or accessibility constraints mentioned above), it may not even be able to predict most

plant sequences. The model will have learned to copy/paste a local evolutionary

pattern, not the desired rules that govern COX1 sequence variation. The sampled

evolutionary space thus limits what’s learned and the conclusions drawn.

What if we expanded our model’s scope to a “universe” of sequences? How many

sequences look like COX1? How many don’t? Do all gene families possess fewer

degrees of freedom than the number of their members? How many genes have

complex histories of which we have only sampled small portions (i.e., have we sampled

just the equivalent of the animal or the plant/fungal portions of the tree)?

This leads us to the problem. Evolutionary nonindependence will influence all big

biological models. Nonindependence will be unevenly distributed across evolutionary

space, potentially invisible to model architectures, and possess an unknown

distribution. Unpredictable errors and biases will be present, and their origins will be

largely untraceable with current tools. Crucially, inferring the depth of the problem a

priori is currently impossible.

Mapping the landscape of
nonindependence
Phylogenetic relationships determine the effective sample size of comparative

datasets. The effective sample size of COX1 was low among plants (few unique

sequences) but proportionally high among animals (many unique sequences). Do most

protein families resemble COX1, or is nonindependence an exception to the rule? How

worried should we be?

Analyzing nonindependence across protein families might help. With this in mind, we

looked at eukaryotic protein families from Ensembl’s Compara database [18]. We

computed the effective sample size for each family using Hill’s diversity index [19], a

popular metric for inferring the biodiversity of datasets. Since Hill’s diversity index



scales with dataset size and protein families vary significantly in size, we normalized

the index by the number of proteins in each family. We refer to the resulting measure

as evenness. An evenness of one means the effective sample size is close to the

sample number; an evenness of zero indicates that a single sample dominates the

effective sample size. Values close to one reflect greater independence and, in turn,

statistical power.



Effective sequence number variation.

(A) The distribution of Hill’s diversity index (normalized by branch number) across

vertebrate protein trees from the Ensembl Compara database (minimum # of

branches per tree = 100). The position of example trees in (C) is enlarged and

outlined in black.

(B) The joint distribution of Hill’s diversity index and branch length variance (mean

normalized) for the same protein trees in (A).

(C) Example protein trees. Hill’s diversity index is labeled above each. Colors

correspond to the trees’ positions in (A).
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Most protein families possessed an evenness of less than one (94.13%) (Figure 2, A).

Across families, evenness was roughly normally distributed, with a mean of 0.41 and a

left-skewed tail (Figure 2, B). Protein families closer to the mean displayed increased

branch length variation, suggesting they contained multiple diversification patterns (as

with COX1) (Figure 2, B). This makes abundant sense from an evolutionary perspective.

Both consistent change (as you’d see with evenness values ≈ 1) and stasis (evenness

values ≈ 0) are relatively rare; instead, things tend to evolve via a mixture of both over

time, leading to the hierarchical and varied relationships indicative of most

phylogenetic trees (Figure 2, C).

These observations lead to a couple of quick insights. First, we should expect most

sequence sets to contain (at least some) nonindependence. Second,

nonindependence will be unevenly distributed. As Felsenstein predicted, every

comparative study (and, hence, BFMs) will be at risk of influence from

nonindependence. Significantly, nonindependence will be influenced by evolutionary

history (i.e., heterogeneity in diversification over time) and sampling (i.e., heterogeneity

in data collection).

Tracing bread crumbs

Nonindependence is an expected problem for BFMs. Exactly how and to what extent

this should affect BFMs is unclear, at least from first principles. Luckily,

nonindependence can leave signatures. Affected ML models may possess data

leakage and performance biases (among other features). How present are these

signatures in BFMs?

Data leakage

Data leakage occurs when a training dataset has information intended to be restricted

to its accompanying test set [20][21]. Information that was supposed to be off limits is

learned, leading to overly optimistic error estimates and a tendency toward overfitting

[22]. Nonindependence influences data leakage via pseudoreplication; similar (or

identical) data points may enter training and test splits.



A recent paper by [23] looked at whether data leakage affects protein language model

(pLM) pretraining. The authors assess the effects of two data split strategies on protein

thermostability prediction by the popular pLM ESM2 [24]. One strategy to control

leakage is to avoid the overlap of pretraining and test sets. The other employs a

popular, clustering-based naive split approach. The naive split produced higher

performance across the board [23], suggesting that ESM2 can use leakage to boost

performance on this task.

Bhatnagar et al. performed a similar test with ProGen3 [7]. Here, the authors admirably

wanted to control for biases in their training data distribution. They used four schemes

to balance training data, ranging from relaxed to stringent sequence similarity-based

filtering [7]. In this framework, stringency is a proxy for the likelihood of data leakage.

The relaxed filtering scheme allows the most sequence similarity between the training

and test sets. The stringent scheme allows the least. Models were trained on each

scheme and assessed using three different validation sets: sequences with 30%,

50%, and 90% similarity to the training data. Across the board, model performance

was better for schemes where more sequences were shared between training/test

splits [7]. Notably, the disparity between the relaxed and stringent schemes increased

with validation set similarity: the difference in model losses between these schemes

was 0.076 at 30% similarity, 0.105 at 50%, and 0.329 at 90%. The best-performing

model was the least stringent scheme, predicting sequences with 90% similarity to its

training set. Like ESM2, ProGen3 can leverage training/test similarity to boost

performance.

Signs of data leakage aren’t restricted to pLMs. Recent work has also pointed out

leakage in applications using AlphaFold structural predictions [25], protein–protein

interaction inference [26], and genomic language models (gLMs) [27], among others

[28].

Performance biases

Even without data leakage, models can display preferential biases toward specific data

patterns. More abundant data elements (e.g., highly conserved sequences or a well-

represented species) can influence model learning and generate detectable

performance biases. When present, there should be a traceable relationship between

the distribution of the training data structure and the model output.



Multiple recent reports have connected pLM biases with the structure of their training

data. For example, Gordon et al. 2024 [29] found that a preference for specific protein

sequences during pretraining influenced the performance of ESM2 on various fitness

prediction tasks. This preference couldn’t be explained by model architecture alone.

Instead, the authors note a substantial role for “user-level bias in curation of training

data” [29]. What ESM2 could learn, and ultimately deem biologically plausible, was

influenced by the randomness of data collection and latent evolutionary relationships.

Ding and Steinhardt (2024) recently demonstrated that species abundance disparities

in protein databases lead to ESM2 and ProGen2 performance biases. They found that

these models would preferentially generate proteins similar to abundant — and

therefore high-likelihood — species in protein design tasks [30]. In a similar vein,

recent work of ours identified taxonomic biases influencing AlphaFold2 structural

prediction and clustering [31]. The phylogenetic distribution of the training data was

predictive of AlphaFold2 output across various taxonomic levels.

Gene age predicts Evo2 likelihood.

Average negative log likelihood as a function of gene age (billions of years before

present; BYA) for human genes. The light blue box corresponds to the standard

error. (r = Pearson’s correlation coefficient).

Interestingly, even rougher correlates of data abundance may predict model

performance. To explore this, we calculated the likelihood for every human gene using

the recently published gLM Evo2 [8], and compared the values to each gene’s age. We

Figure 3



reasoned that older genes will likely be more abundant in training data. Speciation will

have had more time to spread copies of their sequences. Fitting with this idea, gene

likelihoods linearly increased with age (Figure 3). While more work is needed to flesh

this out, it’s intriguing to note the strength of this relationship and its parallels with the

previously mentioned examples.

BFMs are a recent phenomenon. They're diverse in size, architecture, and goals. Many

are sophisticated. With further refinement, it may be possible to overcome limitations

mentioned here (at least in some contexts). The literature describing their limitations is

nascent; the studies discussed here are a part of a small cohort just beginning to

emerge. It therefore remains to be seen how universal their observations are. Still, the

fact remains that, at their core, BFMs are comparative studies. For this reason,

because predictable effects of phylogeny have already started to be detected,

accounting for evolutionary nonindependence will be of universal benefit. But how?

Possible solutions

Rethinking data

Balancing datasets via clustering is a common approach (although not often used to

control for nonindependence per se). For example, the known protein universe

contains an enormous number of sequences (hundreds of millions to billions). Many of

these sequences are copies of themselves; this is entirely predictable given the

phylogenetic structure of biology (think back to our COX1 example). Duplicated

sequences inflate dataset sizes and expand the compute needed. To deal with this,

algorithms have been developed to identify, cluster, and remove sequences with a

sequence similarity over some user-defined amount.

MMseqs2 [32] is a popular option. In training ProGen3, MMseqs2 was used to cluster

and sample sequences across various values [7]. Comparing model performance

across multiple clustering stringencies allowed the authors to select a desirable trade-

off between compute and performance (albeit, as discussed previously, at the risk of

increasing data leakage). Similarly, Fournier et al. 2024 [33] found that performant

pLMs could be trained on MMseqs2 filtered data for an order of magnitude less cost

than other models. ESM2 performance increased when trained on the filtered data,



benefiting sequence recovery and protein structural inference tasks. This suggests

that data balancing can lead models to learn more biologically relevant patterns,

potentially obviating the need for increased scaling of model complexity.

However, cluster-based approaches have their limitations. Global sequence-similarity

filtering may be insensitive to phylogenetic structure. For example, animal and plant

COX1 sequences will have different response curves when clustering; the number of

retained sequences will likely depend on the sequence similarity threshold used. We

clustered protein families from the Pfam database [34] at different similarity

thresholds using MMseqs2 to demonstrate this. As expected, the number of protein

clusters represented among the families decreased with thresholding, though not

significantly; 88.3% of clusters were retained at a sequence similarity of 10%.

Analyzing the same distribution by protein family tells a different story. The filtering

effects were unevenly distributed across protein families (Figure 4, A). Some families

were unaffected, while others rapidly shrank with any amount of filtering. Most were

somewhere in between. Notably, sensitivity to filtering (the slope of cluster number

regressed on sequence similarity) was positively correlated with effective sequence

number (r = 0.55, p = 4.8 × 10 ; Pearson’s correlation) (Figure 4, B). This suggests a

couple of things.

First, retained sequence diversity after clustering will vary by protein family, creating a

nonlinear relationship between similarity thresholds and training data distribution. In

other words, sequence diversity (and, in turn, statistical power) won’t be maintained as

dataset size decreases. Second, phylogenetic relationships predict this relationship.

Families with low effective sequence count will be most affected by clustering; those

with high effective sequence count will be more robust. Most sit on a diverse,

heterogeneous continuum (Figure 4, B). Evolution determines the behavior of the data

and, ultimately, what can be learned.

Other considerations arise. Nonindependent relationships are ubiquitous. How big

would the biological universe be if they were removed? Nonindependence is also

unevenly distributed. Would filtering lead to the loss of whole chunks of biological

phenomena (taxonomic groups, protein families, molecular functions)? More

provocatively, is it possible we have already hit “peak biological data” (as has been

suggested, this is the case for natural language models [35])?
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Nonindependence affects filtering outcomes.

(A) Proportion of retained sequences as a function of sequence similarity filtering

with MMseqs2. Each line corresponds to a protein family. Color corresponds to

the minimum retained sequence proportion for each family.

(B) The relationship between the slopes of each line in (A) (x-axis) and the Hill’s

diversity of each protein family (inferred from their multiple sequence

alignments). Colors are the same as in (A) (r = Pearson’s correlation coefficient).

Much of the known protein universe’s diversity comes from species with just a few

associated sequences or structures [31]. Even minimal data balancing leads to

substantial loss of phylogenetic diversity. For example, ~48% of species are removed

with at least two proteins [31]. Filtering also decreases the diversity of higher

taxonomic groups and protein structural clusters [31].

Similar patterns are present if filtering is done on sequence, instead of taxonomic

diversity. Returning to the data in Figure 2, we wondered what the total number of

effective sequences was across all the Ensembl Compara protein trees. In other

words, how much data would be left if we filtered to just effective sequences? Given

our estimates, we found this would reduce the dataset by about 58% (total sequences

= 4,230,261; effective sequences = 1,782,627). Furthermore, as shown in Figure 2,

these effects weren't evenly distributed (Figure 2, A). Suppose this pattern is

Figure 4



representative (remember, these are just vertebrate protein trees). In that case, it may

be reasonable to expect that most of the data in a given sequence dataset will be

pseudoreplicated. This substantially reduces usable data and, thus, statistical power.

In a peak data scenario, we'd expect models to have slurped up most available

information in the sequence universe. Evidence supporting this may be accumulating.

For example, Tule et al. 2025 [11] found that ESM2 predicts evolutionary relationships

better than ESM3. Similarly, ProGen3 models with more parameters perform worse on

zero-shot fitness prediction than smaller ones [7]. Better estimation of proteins'

natural (phylogenetic) distribution may come at the cost of fitness prediction accuracy

[7]. This fits with [36] and Gordon et al. 2025 [29]; phylogenetic relationships and

protein fitness may reflect divergent processes. Only so much can be learned about

one from the other (more on this later). And, fitting with patterns that may be expected

from a “peak data” scenario, performance on both distributions may fall off as larger

and more complex models are trained. Prediction worsens after a specific training

threshold [7]. Time will tell if these patterns are borne out. Just where the hypothesized

training thresholds exist will likely be model and task-specific. At the very least, initial

signs indicate that the universe of usable data is smaller than we think.

Perplexity all the way down

So, clustering and data balancing may not be the solution. Could phylogenetic

relationships be used to address nonindependence in BFMs? One way to do this

would be direct inference of the latent phylogenetic structure of model inputs and

outputs (i.e., training/test/validation data and predictions/generations). This would be

generally useful. Datasets could be evolutionarily balanced. Training/test splits could

be optimized. Loss functions accounting for nonindependence could be created. The

amount of new biology a model has learned could be estimated. The whole of

biological ML model development could be informed, motivating better-scoped

problems and allowing generalizable rules to be explored more deeply. The problem is

this: phylogenetic tree inference doesn’t scale to the size of datasets used by BFMs

[37]. This feels reminiscent of Felsenstein’s argument in 1985 [1]. Accounting for

phylogeny is the right thing; we often don’t have the phylogenies to do it.

Information theory may provide a solution. As calculated here, Hill’s diversity index is

the exponential of a system's Shannon entropy [19]. In other contexts, this statistic is

given a different name. “Perplexity” has been a popular measure of natural language



processing (NLP) model uncertainty since the late 1970s [38]. As you might have

already guessed, perplexity is the exponential of Shannon entropy. Since language and

protein models often share a common goal — token prediction — perplexity has also

become popular in measuring the residue prediction confidence in pLMs. Predictions

with lower perplexity mean the model can constrain its estimates to fewer equally

possible options; lower perplexity means more certainty. In addition to assessing the

certainty of individual tokens, average perplexity can also be used to benchmark a

model’s performance and scalability. For example, Lin et al. 2023 [24] showed that

ESM2 perplexity dropped from 10.45 to 6.37 bits/residue when scaling from 6 million to

15 billion parameters. Perplexity is a flexible way to measure model performance

locally, globally, and contextually.

At the same time, and as we have already seen, latent features of datasets can be

inferred via perplexity. In Figure 2, we used perplexity to characterize and assess the

effects of filtering a dataset containing millions of sequences. Perplexity efficiently

characterizes phylogenetic patterns and can be cheap to compute; we could estimate

a global distribution from quick measurements of individual protein family trees’

perplexity. Here, and concerning datasets, more perplexity means more effective

measurements, more statistical power, and, likely, more possibilities for generalization.

In this expanded way, perplexity may be broadly helpful in helping machines better

learn phylogeny. Perplexity can help estimate and account for the evolutionary

nonindependence of model inputs (i.e., data). On the other hand, minimizing perplexity

helps build certainty around model outputs (i.e., predictions). It's desirable to build

perplexity into model training. For example, the difference between the dataset and

the prediction perplexity could be a potential loss function. In theory, the distributions

of latent and learned perplexity could also be used for model interpretation, helping

gauge the phylogenetic novelty of de novo designs or identifying which biological

patterns have been captured. Finally, a generalized use of perplexity helps us

understand how sequence preferences [29] determine the interplay between data and

model performance, allowing for fairer comparative benchmarks for BFMs [39].

Phylogeny won’t be enough

Information-theoretic measures like perplexity may help shortcut some of the

roadblocks faced by BFMs. However, it’s worth briefly discussing why solving the



phylogeny problem alone likely won’t be sufficient to realize the lofty goals of biological

machine learning.

Many BFMs implicitly assume that the phylogenetic distribution of traits mirrors their

fitness. Put plainly, things preferred by evolution (i.e., more “fit”) will be selected for,

propagate, and become more abundant. If something still exists after millions of years,

it must have won some evolutionary jackpot, right? This assumption is why the

likelihood calculations of many BFMs are based on their training data distributions. The

“natural” distribution determines the assumed fitness of new observations. If the BFM

has learned a deep “grammar” of biology, then observations far away from the natural

distribution must be considered less likely and less fit.

However, evolution doesn't always generate traits that are optimally fit. It rarely, if ever,

does. Trade-offs and constraints are permanent features. Genetic constraints mean

only particular fitness trajectories are available [40]. Complex interactions and trade-

offs limit phenotypic possibilities (again, this is why birds don’t produce milk and algae

lack nervous systems). Biophysical limits further narrow these possibilities. Only some

pathways through this complex landscape exist at any given moment, determined by

the combined weight of historical, genetic, and phenotypic reins. Extant biological

features are, therefore, “fit enough” and fall somewhere on a (largely unknown) fitness

continuum.

As we already saw, learning to navigate this complex landscape comes at a cost of

learning phylogeny and vice versa [7]; one doesn’t solve the problem of the other. The

natural density of sequences (i.e., the phylogenetic distribution) consistently fails to

estimate fitness [36]. Moreover, even if infinite sequence data were available, exact

fitness estimation would be impossible [36]. For this reason, separating phylogeny,

even if perfectly accounted for, and fitness (i.e., the sieve through which the “grammar”

of biology passes) remains a complex problem for BFMs. Recent work suggests that

the fitness/phylogeny disconnect may be addressed by simple modifications to model

inference that account for shared selective pressures among sequences [41]. It'll be

interesting to see how inference adjustments like this might mitigate limitations of

current BFMs, even without modifications to data and model structures. However,

model adjustments will remain necessary because of what's happening in the models.

In other words, we can scale, expand, and improve our models as much as we want.

Ultimately, and as we hope the reader has come to appreciate, evolution will continue

to determine what we can learn and the conclusions we can draw.



Methods

Data acquisition and processing

Code, including utility and analysis scripts, is available in our GitHub repo (DOI:

10.5281/zenodo.15678022).

All data, including example protein families, are available on Zenodo (DOI:

10.5281/zenodo.15644457)

COX1 tree

Zafeiropolous et al. published the COX1 gene tree in 2021 [15]. The tree was filtered to

the phyla Streptophyta and Chordata, representing plants and animals (respectively).

Vertebrate protein trees

EMF (extended multi-format) files were downloaded from the Ensembl Compara

database (release 114) [18]. Protein family trees (Newick files) were extracted using the

script fig2_extract_trees.py , resulting in 54,399 tree files.

Human gene sequences

Human gene ages were collected from the GenOrigin database [42]. Human cDNA

sequences (GRCh38) were downloaded from Ensembl (release 104) using the script

fig3_download_human_genes.py . For genes with multiple cDNA sequences, the

longest was used. This resulted in 22,796 individual FASTA files.

https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/tree/v1.0
https://doi.org/10.5281/zenodo.15678022
https://zenodo.org/records/15644457
https://doi.org/10.5281/zenodo.15644457
https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/blob/v1.0/code/utils/fig2_extract_trees.py
https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/blob/v1.0/code/utils/fig3_download_human_genes.py


Pfam protein families

The complete Pfam database was downloaded from InterPro using their FTP server

(release 37.3). A random subset of families for analysis was selected and is provided on

Zenodo.

Measuring effective sequence count of protein

family trees

We used Hill’s diversity index to infer the effective sequence count of the Ensembl

Compara protein trees. We required at least 100 proteins in a family to be considered

for analysis. This resulted in a final set of 14,054 trees ranging in size from 100 to 1,499

proteins (median n proteins = 209).

We used a Hill’s diversity q value of 1. This parameter value evenly weighs species

count and relative abundance to estimate the effective count within a sample

population. Each tree's terminal branch lengths were extracted and normalized by their

sum to obtain probability distributions. Hill's diversity was then calculated as the

exponential of Shannon entropy: D  = exp(−Σp log(p )), where p  represents the

normalized branch length for tip i. Since trees varied broadly in size (from 100 to 1,499

proteins), we normalized Hill’s diversity values by the number of tips in the tree,

allowing us to compare the distribution of effective sequence counts across the tree

dataset. The protein family tree structure variance was inferred by calculating the

coefficient of variation (standard deviation/mean) of terminal branch lengths across

protein families.

Code for these analyses can be found in the script, fig2_analysis.R .

Evo 2 likelihood analysis

Evo 2 likelihoods for human gene cDNA sequences were calculated via API access to

the evo2-40b model hosted on NVIDIA. We computed the mean likelihood for each

gene and converted it to a negative log scale. We then used a rolling window approach

to assess likelihood distributions as a function of gene age. The mean and standard

1 i i i

https://zenodo.org/records/15644457
https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/blob/v1.0/code/analysis/fig2_analysis.R
https://build.nvidia.com/arc/evo2-40b


errors of likelihoods for genes falling within 250 million-year windows were computed

from 1 million years ago to 1.5 billion years ago (1 million-year step size). The

relationship between age and rolling-window likelihood was assessed using Pearson’s

correlation.

Code for these analyses can be found in the script, fig3_analysis.R .

Sequence clustering and diversity

MSAs and individual sequences for 219 example protein families were collected from

the Pfam database. Each protein family was clustered using MMseqs2 [32] at multiple

sequence identity thresholds (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%)

with a coverage value of 80%. At each identity threshold, we calculated the proportion

of retained sequences by dividing the number of detected clusters by the number of

proteins in the family. A value of 1 would indicate maximum sequence diversity (n

clusters = n proteins) while a value of 0 would reflect strong sequence conservation (n

clusters < n proteins). For each family, we regressed sequence retention by sequence

identity to obtain a slope of this fit.

Hill's diversity was calculated using column-wise amino acid frequency distributions

for multiple sequence alignments. For each alignment position, we computed diversity

as D  = exp(−Σp log(p )), where p  represents the frequency of amino acid i at that

position. Mean diversity across all alignment positions was normalized using the

formula (D −1)/(S−1), where S = 20 represents the maximum possible amino acid

diversity. These values were then compared to the slopes computed above using

Pearson’s correlation (as in Figure 4, B).

Code for these analyses can be found in the script, fig4_analysis.R .

Additional methods

We used ChatGPT to help write code, and we used Claude to help write code and

clean up code. We used arcadia-themeR (v0.1.1) [43] to generate figures prior to

1 i i i

1

https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/blob/v1.0/code/analysis/fig3_analysis.R
https://github.com/Arcadia-Science/2025-phylogenies-and-bfms/blob/v1.0/code/analysis/fig4_analysis.R


manual adjustment.
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