
Published on Feb 23, 2024 by Arcadia Science DOI: 10.57844/arcadia-9602-3351

Predicted genes from the
Amblyomma americanum
draft genome assembly

We previously released a draft genome assembly for the lone star

tick, A. americanum. We've now predicted genes from this assembly

to use for downstream functional characterization and comparative

genomics efforts.
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What’s new?

We previously released a draft genome assembly and a long-read transcriptome

assembly from the lone star tick, Amblyomma americanum. This assembly was

approximately 90% complete and assembled into ~30,000 contigs. We decided to

move forward with predicting genes from our draft genome assembly since annotation

is limited for this tick species.

In this pub, we describe how we approached this through de novo transcriptome

assembly, microbial decontamination, gene prediction, and validation analyses, which

resulted in a set of predicted genes that is 81.5% complete and 8.7% redundant. We
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The approach

SHOW ME THE DATA: Access our data, including the decontaminated draft

assembly, transcriptome assembly data, and predicted genes and proteins, on

NCBI. You can find our transcriptome assembly data and classification for

bacterial contigs on Zenodo.

To make our Amblyomma americanum genome useful, we next needed to predict

which stretches of DNA correspond to genes. We first performed de novo

were encouraged that our set of gene models fell in the middle of the pack compared

to those available for other tick species. Additionally, comparing the length

distributions of our predicted proteins to protein hits in other tick references gave us

confidence that our predicted gene models are around the expected lengths. Given

the additional sequencing data and effort we’d need to improve the fragmented nature

of the assembly and the encouraging sign that our predictions are of similar quality to

other tick species, we decided to move forward with downstream functional analyses.

This is a follow-up to work described in a prior pub, “De novo assembly of a long-

read Amblyomma americanum tick genome.” For complete background info and

context, visit that pub and the project narrative, “Ticks as treasure troves:

Molecular discovery in new organisms.”

You can find our data on NCBI at BioProject PRJNA932813, including our updated,

decontaminated draft assembly and predicted genes and proteins. You can directly

download the protein sequences here.

You can find these same data, plus transcriptome assembly data and a file with

classification for bacterial contigs, on Zenodo.

You can find code for transcriptome assembly in this GitHub repo; microbial

decontamination of the genome and gene model prediction, plus comparative

analyses to tick references in this GitHub repo; and preprocessing tick reference

proteomes/assembled transcriptomes for comparison in this GitHub repo.
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transcriptome assembly using both publicly available A. americanum RNA-seq data

and our long-read transcriptome assembly to determine which genes are expressed

and the boundaries of the exons and introns in those genes. We then decontaminated

the genome by removing microbial contigs. Using this decontaminated genome and

transcriptome assembly, we predicted gene open reading frames and validated our

predictions against proteins from other tick species.

De novo transcriptome assembly

To improve our annotation of the A. americanum genome, we first used publicly

available RNA-seq data to build a de novo transcriptome (Table 1). RNA-seq data is

commonly incorporated into gene prediction pipelines because it provides evidence

for exons and splice sites [1]. One can either directly map RNA-seq reads to the

genome or assemble them into transcripts and align them to the genome [1]. Since we

used a combination of short- and long-read (PacBio IsoSeq) RNA-seq data, we chose

the de novo assembly strategy for incorporating RNA-seq data into gene predictions.



SRA study accession
Number of

samples

Sequencing

type
Reference

SRP446981 24

Paired-end

short-read (300

bp)

[2]

SRP032795 12

Paired-end

short-read (200

bp)

[3]

SRP051699 4

Paired-end

short-read (200

bp)

[4]

SRP052078; SRP052091;

SRP052108; SRP052106;

SRP052114; SRP052123;

SRP052145; SRP052154

8

Paired-end

short-read (152

bp)

N/A

SRP373454 1 PacBio IsoSeq [5]

Summary of publicly available RNA-seq data used to build the A.

americanum de novo transcriptome.

View the full metadata table for the samples we analyzed in this workflow.

For short-read data, we followed pre-processing recommendations as outlined in the

“Eel Pond Protocol” for de novo transcriptome assembly [6][7]. This approach is

optimized for RNA-seq data from non-model organisms. It removes sequencing errors

that could fragment the assembly while retaining low-coverage reads that could lead

to a more complete assembly. We downloaded each sample from the NCBI Sequence

Read Archive (SRA) using the fasterq-dump  command in the SRA toolkit (version

3.0.6) [8], quality- and adapter-trimmed the reads using fastp (version 0.23.4) [9], and

k-mer-trimmed and digitally normalized reads using the trim-low-abund.py  script in

khmer (version 3.0.0a3) [10]. Because the output of this command is interleaved reads,

we split paired reads into separate files using the repair.sh  command in the BBMap

package (version 39.01) [11].

Given that we combined RNA-seq data from multiple studies that had different

variables (e.g., sex, tissue) or treatments, and that the complexity of RNA-seq data can

Table 1
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impact the resultant quality of assembly [12], we combined samples into 20 assembly

groups that reflected similar underlying biological conditions. Each group was then

assembled separately.

Organizing samples into assembly groups was a difficult decision to make, as

increasing the number of assembly groups made merging transcriptomes difficult. The

alternative would have been assembling all short reads from all samples

simultaneously. However, we reasoned that since we already needed to merge our

short-read assembly with our long-read assembly, and because we wanted to use

multiple short-read assemblers to improve the completeness of our assembly [13],

this problem was unavoidable and would not be more difficult to solve with more

assemblies.

We followed an assembly- and transcriptome-merging routine that is similar to the

Oyster River Protocol for de novo transcriptome assembly [6]. We assembled each

assembly group using Trinity (version 2.15.1) [14] and rnaSPAdes (version 3.15.5) [15].

Then, we combined and deduplicated these assemblies as well as the long-read

assembly [5] together using a modified version of the orthofuser approach

implemented in the Oyster River Protocol [6].

View the workflow code for our transcriptome assembly approach (DOI:

10.5281/zenodo.10601710).

We modified our approach to accommodate a long-read assembly and to work around

issues we encountered with the scalability of the mapping step in the TransRate tool

[16]. Our first step made each contig name unique by prepending the assembly group

to the name using the bbrename.sh  command in BBMap (version 39.01) [11]. Next, we

used mmseqs easy-cluster  in the MMSseqs2 package (version 14.7e284) [17] to

remove perfect duplicates across all transcriptomes. We used the subseq  command

in the seqtk package (version 1.4) to remove duplicates [18] and removed transcripts

shorter than 75 base pairs (bp) using the seq  command in the seqkit package (version

2.5.1) [19]. Next, we used OrthoFinder (version 2.5.5) in DNA mode ( -d ) and with an

MCL parameter of 12 to group transcripts into orthologous groups by assembly [20].

These groups represent transcripts that encode the same isoform or gene. To select a

representative transcript from each group, we first scored the quality of each short-

read transcript using the TransRate tool [6][16]. We then selected at least one

transcript from each group by selecting either all long-read transcripts from the group

https://github.com/Arcadia-Science/2023-amblyomma-americanum-txome-assembly/tree/v1.0
https://www.doi.org/10.5281/zenodo.10601710


if any long-read transcripts were present, or selecting the transcript with the highest

overall score.

We used this selection approach because we reasoned that long-read transcripts are

more likely to be high-quality than short-read transcripts and because we were unable

to score the long-read transcripts using TransRate due to limitations in short-read

mapping. This filtering approach produced our first merged transcriptome, but we then

“rescued” potentially missing transcripts that were filtered out by these steps using

DIAMOND BLASTx (version 2.1.8) [21] annotations against the SwissProt database as

performed in orthofuser [6]. Lastly, we de-duplicated this final set of transcripts at

98% identity using cd-blastx  in the CD-HIT package (version 4.8.1) [22].

After assembly and merging, we next decontaminated the transcriptome. To do this,

we first identified contaminant genomes in our transcriptome by running sourmash

gather  ( -k 51 , --scaled 10000 ) (version 4.8.3) against k-mer databases of bacterial,

archaeal, protozoan, fungal, mammalian, other vertebrate, and plant genomes in

GenBank [23][24]. We then downloaded the genomes for contaminants using ncbi-

genome-download  (version 0.3.3) [25], and used the BLAST package (version 2.14.1) to

make a BLAST database from these genomes ( makeblastdb ) and BLAST ( blastn )

each transcript against the database [26]. We removed transcripts that had a BLAST

hit greater than length 100 nucleotides that matched at least 10% of the transcript with

an identity greater than or equal to 80%. We removed them from the transcriptome

using the subseq  command in the seqtk package (version 1.4) [27].

To evaluate the transcriptome, we performed four checks. First, we quantified the

fraction of reads that mapped back to the assembly using the quant  command in the

Salmon package (version 1.10.2) [28]. Next, we used TransRate (without mapping

mode) [6][16] to produce transcriptome quality statistics. Then, we used dammit [29]

to orchestrate annotation including ORF detection with TransDecoder [30] — we used

our fork to patch small bug fixes in the dammit code base. Last, we performed quality

assessment via BUSCO (version 5.5.0) using transcriptome mode ( -m tran ) against

the arachnida_odb10 lineage [31]. This is a BUSCO database containing 2,934 marker

genes that have a single copy in most genomes in the Arachnida taxonomic class, of

which A. americanum is a member.

We’ve documented our entire approach as a Snakemake workflow (version 7.31.0) [32]

in this file.

http://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
https://github.com/Arcadia-Science/dammit/tree/ac2ccff404ea411ea00193dd2ca34e343542b2a8
https://github.com/Arcadia-Science/2023-amblyomma-americanum-txome-assembly/blob/v1.0/Snakefile


View the workflow code for our transcriptome assembly approach.

Microbial decontamination of the genome

assembly

Before predicting genes, we identified and removed bacterial contigs that could either

be from endosymbiotic taxa or contaminants. To assign taxonomy to each contig, we

created a DIAMOND database of our existing clustered NCBI-nr database [33], and

ran diamond blastx  using this database against the A. americanum contigs with

DIAMOND (version 2.1.8) [21]. We then used the blast2lca  program of MEGAN

(version 6.25.3) [34] and the corresponding NCBI-nr MEGAN mapping file to parse the

DIAMOND BLASTx results and produce a TSV with a taxonomic assignment per

contig. We then calculated the length of each contig using Biopython (version 1.81) [35]

and incorporated this with taxonomy information for contigs classified as bacteria or

unknown. Using the R packages tidyverse (version 2.0.0) [36] and BioStrings (version

2.68.1) [37], we selected the bacterial and unknown contigs longer than 1,000 bp to

remove from the assembly.

View our code for microbial decontamination of the genome and gene model

prediction, plus comparative analyses to tick references (DOI:

10.5281/zenodo.10694669).

Gene prediction and validation

To predict gene models and proteins for the A. americanum draft genome, we used the

nf-core genomeannotator workflow [38], which is still under active development. We

specifically accessed the latest dev  branch from a specific commit and launched the

workflow according to these commands. The pipeline first filters contigs by size with

GAAS (version 1.20) [39] using a default minimum contig size of 5,000 bp to consider

for gene model prediction. We then identified and masked the repeat sequences using

RepeatModeler (version 2.0.2) [40] and RepeatMasker (version 4.1.2-p1) [41]. We first

cleaned and reformatted the assembled transcripts with GAAS (version 1.2.0) [39] and

https://github.com/Arcadia-Science/2023-amblyomma-americanum-txome-assembly/tree/v1.0
https://github.com/Arcadia-Science/2023-amblyomma-annotation/tree/v1.3_pub
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https://github.com/marchoeppner/genomeannotator/tree/a7726dab4ffeed57ef0e22a5655e6232c9b96ef9
https://github.com/Arcadia-Science/2023-amblyomma-annotation/tree/main/annotation


exonerate (version 2.4.0) [42], then mapped to the repeat-masked assembly with

minimap2 (version 2.22) [43]. We used the mapped reads to create the GFF hints input

to AUGUSTUS (version 3.4.0) [44], which we used for initial gene model prediction. We

used these gene models as input to EVidenceModeler (version 1.1.0) [45] to produce a

set of non-redundant proteins. From the GFF output from the nf-core

genomeannotator workflow, we created a GTF-formatted file of the annotations with

AGAT [46].

To validate the set of proteins output by EVidenceModeler, we first ran BUSCO (version

5.5.0) [31] in protein mode using the arachnida_odb10 lineage. To compare the

predicted proteins to other tick species, we obtained available proteins or predicted

proteins from transcriptomes of various tick species downloaded from accessions

listed in Table 2 using our “protein-data-curation” Snakemake workflow. Briefly,

proteomes or assembled transcripts are downloaded by the provided URL link. For

assembled transcriptomes, TransDecoder (version 5.7.1) [30] predicts coding regions

within transcripts. For species with multiple listed proteomes or transcriptomes, the

workflow merges and clusters these at 90% sequence identity with CD-HIT (version

4.8.1) [47]. It also filters proteins to remove any protein smaller than 25 amino acids,

and if isoform information is provided, it only keeps the longest isoform for a given

protein. Additionally, the pipeline adds functional annotation information for each

species’ proteome through KEGG annotations with KofamScan (version 1.3.0) [48],

EGGNOG annotations with eggNOG-mapper (version 2.1.10) [49], and predicts signal

peptides with DeepSig (version 1.2.5) [50].

View our code for preprocessing existing proteomes/assembled transcriptomes

to obtain uniform proteome datasets to compare to our predicted A. americanum

proteins (DOI: 10.5281/zenodo.10607898).

https://github.com/Arcadia-Science/protein-data-curation
https://github.com/Arcadia-Science/protein-data-curation/tree/v1.2
https://doi.org/10.5281/zenodo.10607898


Species

Total

protein

count

Source Accession

Dermacentor

andersoni
22,843 Existing proteome GCF_023375885.1

Dermacentor

silvarum 22,390 Existing proteome GCF_013339745.2

Haemaphysalis

longicornis
23,852 Existing proteome GCA_013339765.2

Hyalomma

asiaticum
27,476 Existing proteome GCA_013339685.2

Ixodes persulcatus 25,991 Existing proteome GCA_013358835.2

Ixodes scapularis 20,184 Existing proteome UP000001555

Rhipicephalus

microplus
17,234 Existing proteome GCF_013339725.1

Rhipicephalus

sanguineus
20,838 Existing proteome GCF_013339695.2

Amblyomma

americanum
28,319

Genome with

transcriptome

assembly

This study

Amblyomma

sculptum
11,655 Transcriptome GEEX01

Dermacentor

variabilis 18,937 Transcriptome GGQS01

Ixodes ricinus 20,704 Transcriptome GIDG01

Ornithodoros

erraticus
18,386 Transcriptome GFWV01,GIXX02

Ornithodoros

moubata 24,072 Transcriptome GIXP02, GFJQ02

Ornithodoros

turicata
29,460 Transcriptome GDIC01, GDIE01

Tick species accession information.

Table 2



For each tick species, we report the number of predicted proteins from our pipeline

and whether we obtained existing proteomes directly or predicted proteins from

assembled transcriptome accessions. For proteins obtained from existing accessions,

we downloaded all proteins from the RefSeq protein accession for that species,

except for Ixodes scapularis, where we downloaded the proteins from the UniProt

proteome for that organism. For species where we predicted proteins from

transcriptome assemblies, we accessed the raw assembled RNA-seq contigs from the

NCBI transcriptome shotgun assembly database. For some species, we used multiple

study accessions to predict proteins.

We then compared these tick proteomes against the filtered set of A. americanum

proteins that we’d also clustered at 90% sequence identity and from which we

removed proteins smaller than 25 amino acids. Therefore, statistics and figures of

these comparisons are from proteomes that have all been filtered the same way. We

created a workflow that makes pairwise diamond blastp  comparisons with DIAMOND

(version 2.1.8) [21] for every tick species proteome against the A. americanum

proteome. Although each protein from a reference tick species was only used once in

the diamond blastp  search, some A. americanum proteins had multiple hits. We did

not dereplicate these instances or pick the best hit since we wanted the diamond

blastp  comparisons for quick validation checks of total protein hits and length

distributions of those hits. The workflow also calculates BUSCO quality statistics for

each input proteome, where we ran BUSCO (version 5.5.0) [31] in protein mode using

the arachnida_odb10 lineage. To parse and plot results from the diamond blastp

results, we used the R packages tidyverse (version 2.0.0) [36], ggridges (version 0.5.4)

[51], viridis (version 0.6.4) [52], and ggpubr (version 0.6.0) [53].

Additional methods

We used ChatGPT to help write and clean up code.



The data

SHOW ME THE DATA: Access our data, including the decontaminated draft

assembly, transcriptome assembly data, and predicted genes and proteins, on

NCBI. You can find our transcriptome assembly data and classification for

bacterial contigs on Zenodo.

De novo assembly produced a near-complete

transcriptome

To improve the genome annotation, we used publicly available Amblyomma

americanum RNA-seq data to build a transcriptome. RNA-seq improves eukaryotic

genome annotation by providing additional evidence for gene models [1]. We

assembled a transcriptome from 48 short-read RNA-seq samples and one long-read

transcriptome (Table 1). We report quality statistics about the transcriptome below, in

Table 3. The transcriptome contained 1.06 million transcripts that encoded 319,324

predicted coding domain sequences. The transcriptome was 97.5% complete (86.3%

duplicated).

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA932813
https://doi.org/10.5281/zenodo.10574109


Metric Value Tool used

Number of transcripts 1,061,354 contigs dammit

Number of base pairs 974,803,561 bp dammit

Minimum transcript length 75 bp dammit

Maximum transcript length 36,548 bp dammit

Median transcript length 284 bp dammit

Mean transcript length 918 bp dammit

N50 length 3,176 bp dammit

Number of 25-mers 947,208,357 k-mers dammit

Number of unique 25-mers 428,744,143 k-mers dammit

Number ambiguous bases 6,482 bases dammit

Redundancy 55% dammit

GC percentage 48% dammit

Complete single-copy genes 2,859 (97.5%) BUSCO

Complete and single-copy 328 (11.2%) BUSCO

Complete and duplicated 2,531 (86.3%) BUSCO

Fragmented single-copy genes 25 (0.9%) BUSCO

Missing single-copy genes 50 (1.6%) BUSCO

Transcriptome quality metrics.

These metrics highlight that the transcriptome is highly redundant. This likely arises

from multiple factors. The A. americanum RNA-seq samples are highly heterogeneous

and variability may come from pooling samples before sequencing. There are also

differences in the populations sampled — the RNA-seq samples we used to build this

transcriptome come from ticks that originated from multiple independent populations

around the United States, which studies have shown display high heterogeneity [54].

We don’t think that this interferes with the usefulness of the transcriptome for gene

model prediction in the genome, but we encourage others to exercise caution for

Table 3



other downstream use cases, such as differential gene expression transcript

quantification.

Draft gene predictions and validations from a

decontaminated assembly

We took the pseudohaploid, deduplicated draft genome assembly and identified and

removed contigs classified as bacterial or unknown (Figure 1). This step removed 1,268

contigs for a new filtered assembly with 36,883 contigs. We then used this filtered

assembly as the input for the nf-core/genomeannotator workflow from this specific

commit to predict gene models and proteins.

Contigs identified as bacterial or unknown and

corresponding lengths.

Color corresponds to the class of bacteria that we

taxonomically identified for that contig.

Figure 1

https://github.com/nf-core/genomeannotator
https://github.com/marchoeppner/genomeannotator/tree/a7726dab4ffeed57ef0e22a5655e6232c9b96ef9
https://github.com/marchoeppner/genomeannotator/tree/a7726dab4ffeed57ef0e22a5655e6232c9b96ef9


The set of 34,557 proteins we obtained had a BUSCO completeness of 81.5% and

duplication of 8.4% against the arachnida_odb10 lineage. We then compared a

reduced set of 28,319 predicted proteins that were filtered for a minimum length of 25

amino acids and clustered at 90% identity against filtered proteins we obtained or

predicted from 14 other tick species. We checked: 1) BUSCO quality scores across tick

references compared to the A. americanum proteome, 2) the number of identified

homologs against other tick species, and 3) the distribution of alignment lengths of

identified homologs to see if there is a high percentage of fragmented proteins in our

dataset. From the BUSCO quality score comparisons, our A. americanum predicted

proteins aren’t as complete as those from other tick genome assembly efforts that

were more curated and less fragmented than our draft genome (Figure 2). However,

we’re encouraged that the quality of predicted proteins for A. americanum falls

somewhere in the middle of the pack when we compare to other tick assembly and

annotation efforts.



BUSCO scores for filtered tick proteomes compared

to the filtered Amblyomma americanum proteome

using the arachnida_odb10 lineage.

We curated proteins either directly from genome or

assembled transcriptome references for each tick species

listed in Table 2.

We then compared proteins from A. americanum to aligned proteins in the other tick

species with pairwise diamond blastp  comparisons. We calculated both the

proportion of proteins from other tick species that had hits in the A. americanum

proteome relative to the total number of predicted A. americanum proteins. The

proportion of proteins from other tick species with hits relative to the total number of

proteins from that tick species’ proteome (Figure 3). For example, we predicted

proteins from the tick Amblyomma sculptum based on a transcriptome assembly, and

this was one of the least complete proteomes in our reference set (we’ve highlighted

the A. sculptum points with red squares in Figure 3).

We identified hits for about 30% of the A. americanum proteome in A. sculptum.

Conversely, 92% of A. sculptum proteins have a hit in the A. americanum proteome. We

Figure 2



have represented this relationship between protein hits in both directions in Figure 3 to

demonstrate that the relationship between the number of proteins is likely due to both

the quality of the reference proteome and the evolutionary relatedness of that tick

species to A. americanum.

Distribution of protein hits from 14 other tick

species relative to either the total number of

proteins in the A. americanum proteome or to

the total number in the corresponding tick

reference proteome.

Points are colored by whether the proteome

originated from a genome or if we predicted it

from an assembled transcriptome. We’ve

highlighted the points representing the A.

sculptum proteome with red squares.

We then checked the length of our predicted proteins compared to the proteins from

the other 14 tick species. For each hit, we divided the length of the A. americanum

source protein by the length of the protein hit from one of the reference species. We

filtered for proteins where this proportion was less than or equal to one, specifically

looking for proteins that are highly fragmented in A. americanum or much shorter than

Figure 3



the corresponding hit in the other species (Figure 4). Depending on the reference we

compared to, 46–82% of protein hits from A. americanum were at least 90% the

length of the reference protein. A. sculptum had the most proteins of similar length to

matches in the A. americanum genome, which makes sense this is the most closely

related species in our reference set. Encouragingly, this shows that compared to most

tick references, the majority of A. americanum proteins are at least 90% the length of

the reference hit protein and that there are not many fragmented proteins in our

dataset compared to the references.



Distribution of protein lengths for A. americanum for hit

proteins among 14 tick reference species.

Plots are separated by whether the proteins for the reference tick

species were obtained directly from the genome or predicted from

the assembled transcriptome of the species. Length proportion is

calculated by the length of the source A. americanum protein

divided by the length of the corresponding hit protein in that tick

species. Color corresponds to the density of proteins with the

calculated length proportion.

Key takeaways
We produced gene predictions from our Amblyomma americanum draft genome

assembly with 81.5% completeness and 8.4% redundancy. Given that our draft

assembly is quite fragmented (30,000 contigs with 90% completeness), we think

Figure 4



we’ve obtained the best possible gene models we can using available tools without

drastically increasing redundancy levels. The quality of our gene predictions is similar

to those of other tick species. We’ve therefore decided to move forward with more

intentional functional annotation and comparative analyses.

SHOW ME THE DATA: Access our data, including the decontaminated draft

assembly, transcriptome assembly data, and predicted genes and proteins, on

NCBI. You can find our transcriptome assembly data and classification for

bacterial contigs on Zenodo.

Next steps
In the future, if we undertake similar de novo transcriptome assembly efforts, we’d like

to improve upon this approach. We think the deduplication procedure was

unnecessarily complicated and sub-optimal — our BUSCO scores show a very

duplicated transcriptome. However, TransRate was limited both by the number of

contigs in the transcriptome that it could score in a given run (it did not work with one

million transcripts) and by the number of short reads it could align (it failed with ~10 GB

R1/R2 files), making it impossible to score all transcripts in a single TransRate run, as is

implemented in the original orthofuser protocol. We’re considering limiting ourselves

to a single transcriptome assembler that outputs isoform information (Trinity or

rnaSPAdes), but this will only work as a complete solution if we don’t have a long-read

transcriptome to combine with. We’re also considering using a de Bruijn graph

approach to identify transcripts with shared sequencing content, but if we take this

approach, we’ll need to validate it carefully.
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