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time points

How do you approach getting a microbiome set up in a new lab?

We’re sharing protocols for how we collected, stocked, and

sequenced a set of cheese rind microbiomes and generated a high-

quality metagenomics resource for future computational studies.
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Purpose

This collection of high-quality short- and long-read, time series sequencing data sets

should serve as a valuable community resource for bridging observational and

experimental work, for developing metagenomic analysis pipelines, and for

understanding cheese rind microbial communities.
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We’ve put this effort on ice! �

#StrategicMisalignment

As we explored microbial communities during our first ~year as a company, we

refined our strategy and realized that we don’t want to divide ourselves along the

lines of standard scientific disciplines. Rather than pursuing “microbiology” in a

traditional sense, we’re now taking a broader-scale computational approach to

identify potential evolutionary innovation in any organism, and then follow up.

Thus, while we may return to metagenomic techniques in the future, we’ve

stopped working on this particular project.

Background and goals
One of the biggest challenges in coupling community-level observations to

mechanistic understanding of microbiomes is figuring out how to bring microbial

communities into the lab. Here, we demonstrate an example of how we went about

“onboarding” a new microbial community at Arcadia. Our goal was to proactively

consider aspects of a new community that could be informative and to stock samples

so that future work would not be hindered by a lack of access to material. We decided

that in addition to generating glycerol stocks of the communities for future community

Data from this pub, including raw reads and assemblies, is accessible in the

European Nucleotide Archive (ENA). Taxonomic and functional analysis is available

on MGnify.

Step-by-step protocols are available as a collection on protocols.io.

Code and data tables used to produce visualizations are available in this GitHub

repository.

Learn more about the Icebox and the different reasons we ice projects.

https://www.ebi.ac.uk/ena/browser/view/PRJEB58160
https://www.ebi.ac.uk/metagenomics/studies/MGYS00006097#overview
https://dx.doi.org/10.17504/protocols.io.n2bvj8j5xgk5/v1
https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://www.arcadiascience.com/blog/icebox


growth experiments or microbial isolation, it would be helpful to stock samples for

future mass spectrometry, spatial imaging, viral DNA extraction and phage isolation,

proximity ligation Hi-C libraries, metagenomics, and metatranscriptomics.

Based on in-house expertise, we selected five microbial communities growing on

washed-rind cheeses as the first communities to onboard at Arcadia (Figure 1). Cheese

rinds are a validated and stable experimental platform for microbial community

research [1][2][3][4]. As part of our initial characterization of these communities, we

also produced high-quality short- and long-read metagenomic time series sequencing

data and assemblies, including whole-genome amplification sequencing for some

samples. Comparison of native DNA to amplified DNA can facilitate discovery of DNA

modifications [5].

Alongside this pub, we have provided a collection of protocols for onboarding this

microbial community, including protocols for sample collection, DNA extraction, and

virome harvest. We also generated glycerol stocks for all of the cheeses used in these

experiments that we would be happy to make available to others for downstream uses

like isolating individual strains or building culture collections.

While we have shifted direction and no longer plan to use these data sets for the time

being, we hope that these protocols will be helpful to others who want to bring a

microbial community into the lab. The data sets should be useful for metagenomic

data mining and development of metagenomic analysis software, investigating DNA

modifications, and learning about microbial communities of cheese.

SHOW ME THE DATA: Access our metagenomic sequencing data, including raw

reads and assemblies. See MGnify for taxonomic and functional analysis.

https://dx.doi.org/10.17504/protocols.io.n2bvj8j5xgk5/v1
https://www.ebi.ac.uk/ena/browser/view/PRJEB58160
https://www.ebi.ac.uk/metagenomics/studies/MGYS00006097#overview


The five washed-rind cheeses that we

sampled for this study.

Cheese names are abbreviated for simplicity. W:

weeks, M: months

The approach

Code and data tables to produce figures for this pub are available in this GitHub

repository (DOI: 10.5281/zenodo.7710287).

Briefly, we extracted DNA from five cheese rind communities, including their viral

components (Figure 1). We then used short-read Illumina sequencing and long-read

Nanopore sequencing (with and without whole-genome amplification) to characterize

the microbes present in the full communities. Long-read sequencing can improve the

Figure 1
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quality of metagenomic assemblies. We sequenced multiple time points to capture the

succession of microbes throughout the aging process. We then used the long-read

sequencing data to predict circular contigs in the metagenomic assemblies. See

detailed methods below or skip to the results.

TRY IT: You can find detailed, step-by-step protocols in this collection on

protocols.io.

Sampling and DNA extraction

We sampled rinds from five distinct washed-rind cheeses aged in a cave facility in

Vermont, USA as described in our “Harvesting and stocking cheese rind community

samples” protocol, available on protocols.io. For simplicity, we have assigned each

cheese an abbreviated name (Table 1). We selected three different time points in aging

from each cheese, and used a subset of those samples for metagenomic sequencing.

We made glycerol stocks for all the cheeses for possible downstream use for culture

collection, as described in the protocol. WH 2M and WH 2M Hous are the same

cheese style but were separate wheels that we sampled at different times. We

performed DNA extraction from these samples as described in our “High-molecular-

weight DNA extraction from cheese rind microbial communities” protocol.

Cheese Age of sequenced samples Full aging time of cheese

El 2 weeks, 1 month, 3 months 2–3 months

OM 2 weeks, 1 month, 2 months 2.5–3.5 months

WI 3 weeks 1.5–3 months

AL 4 months 8–12 months

WH 1 month, 2 months, 4 months 3–6 months

WH Hous 2 months 3–6 months

Table 1. Age of sequenced samples for the five cheeses.

https://dx.doi.org/10.17504/protocols.io.n2bvj8j5xgk5/v1
https://dx.doi.org/10.17504/protocols.io.n2bvj8j5xgk5/v1
https://dx.doi.org/10.17504/protocols.io.x54v9dr7mg3e/v1
https://dx.doi.org/10.17504/protocols.io.x54v9dr7mg3e/v1
https://dx.doi.org/10.17504/protocols.io.rm7vzbkj8vx1/v1
https://dx.doi.org/10.17504/protocols.io.rm7vzbkj8vx1/v1


Virome harvesting and DNA extraction

In parallel to harvesting and analyzing the full cheese rind microbial community, we

also developed protocols to specifically harvest and analyze the viral component (the

virome). We made concentrated virome extracts from the cheese rind samples, from

which we extracted DNA and made glycerol freezer stocks. For full, step-by-step

instructions, see our “Virome harvesting from cheese microbiomes” and “Virome DNA

extraction with phenol-chloroform” protocols on protocols.io.

ONT long-read sequencing

We size-selected DNA samples from AL 4M, WH 2M, WH 2M Hous using this protocol

from Oxford Nanopore Technologies (ONT) prior to ONT library preparation to enrich

for fragments >2 kb. Note that you need to make a free Nanopore Community account

to view ONT protocols. We size-selected DNA samples from OM 2W, OM 8W, EL 2W,

EL 12W, WH 1M, WH 4M using this protocol from ONT prior to ONT library preparation

to enrich for fragments >10 kb. For whole-genome amplified libraries (OM 4W WGA, EL

4W WGA, WH 2M WGA), we used the same DNA sample we used for native

sequencing as the input into this protocol from ONT. We used 20 ng of DNA as input

for amplification. For AL 4M, WH 2M, WH 2M Hous, OM 4W, EL 4W, and WI 3W, we

loaded 10 fmol of library, assuming a size of 35 kb. For OM 2W, OM 8W, EL 2W, EL 12W,

WH 1M, WH 4M, OM 4W WGA, WH 2M WGA, El 4W WGA, we loaded 10 fmol of library

onto the flow cell, assuming 10 kb average length. We prepared libraries for OM 2W, EL

2W, and WH 1M with SQK-LSK114 and ran them on R10.4.1 flow cells (one full cell per

sample); we prepared all other libraries with SQK-LSK112 and ran them on R10.4 flow

cells (one full cell per sample). We sequenced until pores no longer showed activity

(~72 h, although the majority of pores were no longer active after 40 h). We used the

GridIon for sequencing and live base calling using the super-accurate base calling

configuration and the following software versions: MinKNOW 22.08.6, Bream 7.2.8,

Configuration 5.2.5, Guppy 6.2.7, and MinKNOW Core 5.2.2. We set the minimum read

length to 1000 bp and toggled read splitting on. For a summary of how we sequenced

DNA from which cheeses, see Table 2 below.

https://dx.doi.org/10.17504/protocols.io.j8nlkw29xl5r/v1
https://dx.doi.org/10.17504/protocols.io.ewov1oxdklr2/v1
https://dx.doi.org/10.17504/protocols.io.ewov1oxdklr2/v1
https://community.nanoporetech.com/extraction_methods/spri-size-selection
https://community.nanoporetech.com/extraction_methods/size-selection2
https://community.nanoporetech.com/docs/prepare/library_prep_protocols/premium-whole-genome-amplification-sqk-lsk112/v/wal_9154_v112_revf_09feb2022/overview-of-the-protocol?devices=minion


Illumina short-read sequencing

We sent the same DNA extractions that we used as input for size selection prior to

ONT sequencing to Novogene for Illumina library preparation and sequencing. We

requested 16 G of raw data per sample. Novogene performed paired-end 150 bp

sequencing on an Illumina NovaSeq 6000. The cheese samples from which we

Illumina-sequenced DNA are summarized in Table 2.

Native ONT WGA ONT Illumina

OM 2W x x

OM 4W x x x

OM 8W x x

EL 2W x x

EL 4W x x x

EL 12W x x

WH 1M x x

WH 2M x x x

WH 4M x x

AL 4M x

WH 2M Hous x

WI 3W x

Table 2. Summary of metagenomic sequencing work.

Each column represents a single DNA extraction sample. Rows represent sequencing

techniques and an ‘x’ means we applied this technique to the sample in this column.

The final two characters of the sample name designate the aging time of the cheese

(W: weeks, M: months). ONT: Oxford Nanopore Technologies, WGA: whole-genome

amplification. WH 2M and WH 2M Hous are samples from the same cheese style at

approximately the same aging time point, but were separate wheels that we sampled

at different times.



Metagenomic assembly of long-read

sequencing data

We concatenated all FASTQ files with ‘passed’ reads (quality score >10) together and

trimmed adapters using Porechop_ABI 0.5.1 [6] and Python 3.8. We put trimmed reads

into metaFlye 2.9.1-b1780 [7] using the --nano-hq  and --meta  flags. We polished the

assemblies with medaka 1.7.2 using BCFtools 1.14, bgzip 1.14, minimap2 2.17, SAMtools

1.14, and tabix 1.14. We obtained assembly statistics from the metaFlye output log and

obtained read statistics from the ONT reports produced during sequencing.

Metagenomic assembly of short-read

sequencing data

For each sample, we quality-filtered Illumina paired reads with fastp 0.23.2 [8] using

the --cut_front --cut_tail --cut_mean_quality 15 -q 15  and keep_phix false

flags. We assembled filtered reads with metaSPAdes 3.15.3/Python 3.9.6. We obtained

assembly statistics using the QUAST web interface [9] and Novogene provided read

statistics.

Code and data tables to produce figures for this pub are available in this GitHub

repository (DOI: 10.5281/zenodo.7710287).

Sourmash and sourmashconsumr analysis

We used sourmash version 4.6.1 to compare all of the metagenomic assemblies and to

look at the taxonomic composition of the WH, OM, and EL Illumina metagenomic time-

series data [10]. We used the sourmash sketch dna  command with -p  flags

k=31,scaled=1000  to make signatures for all metagenomic assemblies. We then used

the sourmash compare  command to make a similarity matrix for the assemblies. We

used the sourmash sketch dna  command with -p  flags k=31,scaled=1000,abund  to

make signatures for paired-end Illumina read files. We used the sourmash gather

command with -k 31  and --scaled 1000  options for each of the nine signatures.

For sourmash gather , we used the pre-prepared sourmash GenBank genomes from

https://github.com/nanoporetech/medaka
https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://doi.org/10.5281/zenodo.7710287


March 2022 k31 databases for viruses, bacteria, archaea, protozoa, and fungi, plus the

custom cheesegenomes-k31-scaled1k  database. We then used the sourmash tax

annotate  command on the resulting gather files with the taxonomy sheets for these

six databases. This resulted in nine sr.with-lineages.csv  files. We then used the

sourmashconsumr package [11] to make time-series alluvial plots.

Data deposition

We deposited raw Illumina and Nanopore reads (FAST5 and FASTQ files) and their

corresponding metagenomic assemblies in the ENA (project PRJEB58160). We also

requested MGnify analysis for the deposited data through the MGnify webpage. The

resulting analysis is available here (study MGYS00006097).

The results

SHOW ME THE DATA: Access our metagenomic sequencing data, including raw

reads and assemblies. See MGnify for taxonomic and functional analysis.

To generate reference metagenomic data sets for this microbiome, we generated

separate assemblies based on long- or short-read data.

Depth of Illumina sequencing

per sample.

Figure 2

https://www.ebi.ac.uk/ena/browser/view/PRJEB58160
https://www.ebi.ac.uk/metagenomics/studies/MGYS00006097#overview
https://www.ebi.ac.uk/ena/browser/view/PRJEB58160
https://www.ebi.ac.uk/metagenomics/studies/MGYS00006097#overview


ONT long-read sequencing statistics.

(A) Number of reads collected per sample.

(B) N50 of ONT reads per sample.

WGA: Whole-genome amplification. “WH 2M” and

“WH 2M Hous” are samples from the same

cheese style at approximately the same aging

time point, but were separate wheels that we

sampled at different times.

For Illumina short-read 150 bp PE sequencing, the average sequencing depth was 119

million reads per sample (Figure 2). For ONT long-read sequencing, the average depth

was around 1.2 million reads per sample, with an average N50 of 5.8 kb (Figure 3).

Figure 3



Metagenomic assembly statistics from short-read

assemblies.

(A) Total length of the assembly per sample.

(B) Number of contigs per sample.

(C) Longest contig per sample.

(D) N50 of contigs per sample.

The Illumina metagenomic assemblies were an average of 1.5 times larger than the

GridIon assemblies of the same DNA sample, with 7.5 times the number of contigs

(Figure 4 and Figure 5). The N50 of the Illumina assemblies was 19.6 kb on average,

whereas the N50 of the long-read assemblies was 333.8 kb. For long-read

sequencing, the longest assembled contigs were an average of 3.7 Mb, about the size

of a complete bacterial genome, while the longest Illumina contigs were about 0.6 Mb

on average (Figure 4 and Figure 5).

Figure 4



Metagenomic assembly statistics from long-read

assemblies.

(A) Total length of the assembly per sample.

(B) Number of contigs per sample.

(C) Longest contig per sample.

(D) N50 of contigs per sample.

We assembled an average of 116 circular contigs per sample from the long-read data,

which may represent complete bacterial chromosomes, viruses, or plasmids (Figure 6,

Table 3). As expected, our data suggest that using long reads dramatically improved

assembly contiguity.

Figure 5



Number of circular contigs per

sample.

<1000

bp

1000–

10000 bp

10000–

100000 bp

100000 bp –

1 Mbp

>1

Mbp

AL 4M 10 81 39 3 0

EL 2W 2 58 18 1 3

EL 4W 1 34 19 2 3

EL 4W

WGA 2 40 35 1 1

EL 12W 4 63 44 3 2

OM 2W 5 43 24 2 2

OM 4W 5 47 14 2 2

OM 4W

WGA 3 28 41 0 0

OM 8W 0 51 41 2 4

WH 1M 14 129 82 7 2

WH 2M 21 151 39 4 0

WH 2M

WGA 2 49 64 4 1

WH 4M 1 90 38 1 0

WH 2M

Hous
18 144 52 2 1

Figure 6



<1000

bp

1000–

10000 bp

10000–

100000 bp

100000 bp –

1 Mbp

>1

Mbp

WI 3W 5 20 12 1 3

Table 3. Size distribution of circular contigs in long-read assemblies.

MDS ordination plot based on the

similarity matrix produced by

sourmash comparison of the

assemblies.

Since the cheeses sampled all belong to a similar rind style and are aged in the same

facility, we next applied a min-hash-based comparison pipeline to the short-read data

to understand how similar these data sets are. Sourmash comparison of the time

series assemblies showed that the microbial communities from OM and EL cluster

closely together, while WH appears distinct (Figure 7, green points). Based on short-

read data, the OM and EL communities appear to be dominated by Psychrobacter and

Pseudoalteromonas spp. throughout the aging process. Actinobacteria and

Halomonas spp. more heavily dominate WH communities. A larger fraction of the WH

metagenome is unclassified compared to the other two communities (Figure 8). We

suspect this may be due to a higher fraction of fungal genomes in WH that are not well

represented in databases.

Figure 7



Change in abundance of microbes over the aging process

based on sourmash analysis of short-read sequencing data.

Figure 8



Note that colors correspond to different microbes across the three

panels.

Key takeaways
Cheese rinds are semi-complex microbial communities containing bacteria, viruses,

and fungi. We used both long- and short-read sequencing to survey the microbial

communities of five different cheeses across multiple time points. Long-read

sequencing lets us assemble contigs the length of bacterial chromosomes. These

data sets can serve as resources for benchmarking computational workflows and

guiding computational methods development at Arcadia and beyond.

Please reuse our data!
We sequenced the same communities using multiple approaches: short-read Illumina

sequencing, native DNA ONT sequencing, and whole-genome amplified ONT

sequencing. These paired data sets are a resource to evaluate how different

sequencing approaches differentially impact recovery of microbial community

members [12], an important consideration when choosing a sequencing methodology.

We also generated paired native DNA and whole-genome amplified (WGA) ONT data

sets as a resource to facilitate DNA modification discovery (for example, [5] and [13]).

DNA modification identification can guide genome engineering efforts of bacteria [14]

[15], as well as the discovery of new DNA chemistries in microbial communities. As

current de novo modification prediction tools for ONT data are designed for ONT R9

chemistry, which will be fully discontinued this year, we hope that the paired

WGA:native R10 chemistry data that we’ve provided will be useful for the development

of updated tools. FAST5 files required for this type of analysis are available in the

European Nucleotide Archive (ENA).

We encourage others interested in microbial communities and/or DNA modification to

explore these data sets!

https://www.ebi.ac.uk/ena/browser/view/PRJEB58160


Next steps
We’re not planning to further analyze this data in the near-to-medium-term, but we

encourage others to make good use of the paired data sets and stocked samples.

We have also done HiPR-FISH spatial imaging [16] on the same cheese samples

sequenced here. Be on the lookout for an upcoming pub presenting this data!
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